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We study the elastic nucleon–deuteron (Nd) scattering process at the
incoming nucleon laboratory energy E = 65 MeV working within the for-
malism of Faddeev equations. We employ, for the first time in the elastic
Nd scattering, the OPE-Gaussian nucleon–nucleon (NN) potential and
confirm its high quality by comparing our predictions for the differential
cross section with results based on the AV18 potential as well as with avail-
able data. We also estimate the theoretical uncertainty of this observable
originating from uncertainties of the OPE-Gaussian model parameters. We
find the relative uncertainties to be smaller than 0.8% for the differential
cross section. The correlations between various parameters of the OPE-
Gaussian are also shown.
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1. Introduction

Various models of the NN potential have been derived up to now. They
usually combine the approach based on the meson-exchange picture and/or
on the chiral Lagrangian with more phenomenological paths. All modern
models are constructed in such a way that the NN phase shifts and the
deuteron properties are described with high precision. The AV18 model [1]
— a semi-phenomenological force whose long-range part, given by the one-
pion exchange (OPE), is supplemented by a purely phenomenological short-
range term — can be a good example. That short-range part is given by
a set of operators (like e.g. 1, ~L · ~S, L2, S12, etc.) accompanied by radial
functions, e.g. of the Saxon–Woods type.
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A reliable estimation of theoretical uncertainties is becoming an increas-
ingly important task in nuclear physics. These uncertainties can be partially
related to uncertainties of the NN interaction, which in turn depend on the
finite accuracy of the experimental data. In the case of predictions based
on the chiral forces, also the so-called truncation errors have to be taken
into account. Such errors have been studied e.g. in [2] and in [3], where a
general prescription for estimating such errors has been proposed. It is also
possible to estimate uncertainties related with a given numerical scheme,
and here many computer science methods can be used [4]. The propagation
of theoretical uncertainties from the NN force to many-body observables is
an open question.

The newly developed OPE-Gaussian potential [5] offers a unique oppor-
tunity to study this issue. This is because of the intense attention paid by
the authors of [5] to the determination of statistically well-defined uncer-
tainties of the potential parameters. The OPE-Gaussian force, similarly to
the AV18 interaction, can be decomposed to the long-range and short-range
components

V (~r ) = Vshort(~r )θ(rc − r) + Vlong(~r )θ(r − rc) , (1)

where rc = 3 fm and the Vlong part contains the OPE part and electro-
magnetic corrections for the proton–proton interaction. The short-range
component is built from Ô1, . . . , Ô18 operators, from which 16 are the same
as in the AV18 model, see [6] for details. It has a form of

Vshort(~r ) =

18∑
n=1

Ôn

[
4∑

i=1

Vi,nFi,n(r)

]
, (2)

where Fi,n(r) are radial Gaussian functions which depend on a free param-
eter a0 defining their widths and strength parameters Vi,n which are fixed
from the NN data. Note that in Ref. [5], the above given sum contains 21
operators but in the final expression three of them are dropped.

To studyNd scattering, we use the formalism of Faddeev equations which
belongs to standard techniques used to investigate three-nucleon (3N) re-
actions. Our approach is described in detail e.g. in [7, 8]. In the present
work, we neglect the 3N interaction and apply only the two-body force,
which enters the Faddeev equation via the t-matrix operator. That opera-
tor and the free 3N propagator are used to obtain the complete transition
amplitude, from which any observable for this process can be calculated.
Our numerical solution is obtained using 3N partial waves, and we take into
account all states with the two-body angular momentum j up to j = 5 and
the three-body total angular momentum J up to J = 25
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2. The correlation matrix

The authors of Ref. [5] carefully analyzed the NN data and constructed
the “3σ self-consistent” database. This allowed them, by means of a fitting
procedure, to obtain not only the central values of the potential parameters
but also their correlation coefficients. More precisely, the fitting procedure
was applied to the potential parameters on the partial wave basis. From
these parameters, the central values and the covariance matrix for the Vi,n
and a0 parameters can be calculated. In Fig. 6 of [5], the genuine corre-
lation matrix for potential parameters on the partial wave basis is shown.
We have been equipped by authors of Ref. [5] with a sample of 50 sets of
potential parameters what allowed us to estimate the correlation matrix
directly for Vi,n and a0 parameters (avoiding any partial wave decomposi-
tion). This matrix is shown in Fig. 1. The tick labels denote the operators
numbered as in Eqs. (A4) and (A5) of [5] and there are four strength param-
eters for the Gaussian functions V1...4,n for each operator Ôn. This creates
the 4 × 4 submatrices shown in Fig. 1. We observe that, beside the obvi-
ous strong correlations between Vi,n for a given operator Ôn, there are also
strong correlations between various operators e.g. Ô1 (the unit operator)
and Ô15 (T12). The interested reader can obtain more precise values of the
correlations parameters directly from Fig. 1.
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Fig. 1. The correlation matrix for the Vi,n and a0 parameters of the OPE-Gaussian
model. For tick labels, see the text.
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3. The differential cross section

In Fig. 2, we show predictions for the differential cross section for elastic
Nd scattering at the incoming nucleon laboratory energy E = 65 MeV.
The dark gray/red band comprising 50 curves based on different sets of
potential parameters is hardly visible since it overlaps with the black curve
representing predictions obtained with the central values of the parameters.
The width of the band remains smaller then 1.6% of the magnitude of the
cross section at a given scattering angle. The OPE-Gaussian predictions
are close to the ones obtained with the AV18 force (dashed/blue curve)
and to the data. Thus, we conclude that basing on the differential cross
section only, it is impossible to judge if the new force delivers a better data
description than the other models. A study of polarization observables using
the OPE-Gaussian force is in progress.
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Fig. 2. (Color online) The differential cross section for elastic Nd scattering at
incoming nucleon laboratory energy E = 65 MeV. Graphs show the same cross
section but at various ranges of the scattering angle Θcm. For the description of
the band and curves, see the text. Data are from [9] (pluses) and [10] (circles).
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