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In this paper, the Lie point symmetry analysis method is used to in-
vestigate the (2+1)-dimensional Burgers equations. We have obtained the
optimal system of Lie subalgebras. Some new exact solutions for the (2+1)-
dimensional Burgers equations are obtained.
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1. Introduction

The solutions of nonlinear differential equations are an essential tool
for many physical and engineering applications. There are many methods
to solve nonlinear partial differential equations (PDEs) such as the Weier-
strass function method [1], Jacobi elliptic function method [2, 3], Hirota
bilinear method [4], the inverse scattering method [5], the tanh method [6],
the extended mapping transformation method [7], the truncated expansion
method [8], the simplest equation method [9], the bifurcation method [10]
and Lie symmetry method [11–14]. The latter is considered as the most
powerful method for getting exact solutions of PDEs.

In this paper, we use the Lie symmetry method to investigate the (2+1)-
dimensional Burgers equations [15]

ut = uuy + λvux + µuyy + λµuxx ,

ux = vy , (1.1)
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where u = u(x, y, t) and v = v(x, y, t), µ and λ are real constants. When
x = y and u = v, Eq. (1.1) degenerates to the famous one-dimensional
Burgers equation

ut = muux + nuxx , (1.2)

wherem = λ+1 and n = µ(λ+1). Burgers’ equation (1.2) is widely used for
describing physical phenomena in fluid mechanics, nonlinear acoustics, gas
dynamics and traffic flow. For example, it is considered as the lowest order
approximation for the one-dimensional propagation of weak shock waves in
fluids [16]. Burgers’ equations (1.1) are a generalization of Burgers’ equa-
tion (1.2) and its equivalent form is derived from the Painleve integrability
classification in [17].

Many types of exact solutions for Eq. (1.1) are obtained in [15, 18–25].
Soliton and soliton-like solutions are obtained in [15, 18]. Periodic and dou-
bly periodic solutions are obtained in [19–21]. In [22, 23], variable sepa-
ration solutions are obtained. Interaction between kink solitary wave and
rogue wave is investigated in [24]. Residual symmetry analysis is investigated
in [25]. In this paper, we concentrate on finding new similarity solutions of
Eq. (1.1).

The sequence of this paper is as follows: In Section 2, we use the sym-
metry analysis of (1.1) to find all Lie algebra of symmetry generators. In
Section 3, we obtain the optimal one-dimensional system of these subalge-
bras. In Section 4, we obtain exact solutions of the reduced equation that
is produced from the infinitesimal transformations.

2. Symmetry analysis of Eq. (1.1)

The infinitesimal generator Γ of the Lie point transformations is given by

Γ = X
∂

∂x
+ Y

∂

∂y
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
. (2.1)

We use Maple to obtain the infinitesimal symmetry generators by solving
the determining equations that are produced from the invariant condition
Γ (2)∆ |∆=0= 0 (this condition is defined in [26]). We obtain
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T =
1

2
c5t

2 + c4t+ c1 ,

X = F (t) +
1

2
(c5t+ c4)x ,

Y =
1

2
(c5y + 2c3)t+

1

2
c4y + c2 ,

U = −1

2
c5(tu+ y)− 1

2
c4u− c3 ,

V = −1

2
(c5t+ c4)v −

1

λ
F ′(t)− 1

2λ
c5x , (2.2)

where c1, c2, c3, c4 and c5 are constants, F (t) is an arbitrary function and
F ′(t) is its derivative with respect to t. In [27], the nonlocal symmetry
analysis of Eq. (1.1) is investigated. The authors in [27] have obtained in-
finitesimals (2.2), however, they considered only the case of F (t) = c6t+ c7.
Here, we consider F (t) as an arbitrary function of t in order to obtain some
new similarity solutions of Eq. (1.1). The Lie algebra of infinitesimal sym-
metry generators is spanned by five-dimensional and the infinite-dimensional
subalgebras

v1 = ∂t ,

v2 = ∂y ,

v3 = t∂y − ∂u ,
v4 = 2t∂t + x∂x + y∂y − u∂u − v∂v ,

v5 = t2∂t + tx∂x + ty∂y − (tu+ y)∂u −
(
tv +

x

λ

)
∂v ,

vf = F (t)∂x −
F ′(t)

λ
∂v . (2.3)

3. Classification of group invariant solutions

To find the one-dimensional optimal system of the five-dimensional sub-
algebras (2.3), we follow the procedure described in [28]. To achieve this
task, we use the commutator table shown in Table I and the table of adjoint
shown in Table II.

Let v = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 be an arbitrary element of the
subalgebra (2.3). The invariant function such that φ(Adg(v)) = φ(v), where
v ∈ G (G is a five-dimensional Lie algebra of (1.1) generated by v1, · · · , v5),
g ∈ G (G is the corresponding symmetry group of G) and the adjoint action
defined in [28] is given by

φ(v) = a24 − a1a5 . (3.1)
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TABLE I

Table of commutators.

[vi, vj ] v1 v2 v3 v4 v5

v1 0 0 v2 2v1 v4
v2 0 0 0 v2 v3
v3 −v2 0 0 −v3 0
v4 −2v1 −v2 v3 0 2v5
v5 −v4 −v3 0 −2v5 0

TABLE II

Table of adjoint.

Ad(eεvi)vj v1 v2 v3 v4 v5

v1 v1 v2 v3−εv2 v4−2εv1 v5−εv4+ε2v1
v2 v1 v2 v3 v4−εv2+ 1

2ε
2v2 v5−εv3

v3 v1+εv2 v2 v3 v4+εv3 v5
v4 e2εv1 eεv2 e−εv3 v4 e−2εv5
v5 v1+εv4+ε

2v5 v2+εv3 v3 v4+2εv5 v5

There are three cases to be considered: φ(v) > 0, φ(v) < 0 and φ(v) = 0.

— Case 1 : If φ(v) > 0, then we put a1 = a5 = 0 and a4 = 1. By adjoint
action Ad(eεv3v), if we take ε = −a3, then v is equivalent to

v = a2v2 + v4 . (3.2)

— Case 2 : If φ(v) < 0, then we put a4 = 0 and a1 = a5 = 1. By
adjoint action Ad(eε1v2v), if we take ε1 = a3, then v is equivalent to
v = v1 + a2v2 + v5. Another adjoint action Ad(eε2v3v), if we take
ε2 = −a2, then v is equivalent to

v = v1 + v5 . (3.3)

— Case 3 : If φ(v) = 0, then there are three subcases.

— Subcase 1 : We put a4 = a5 = 0 and a1 = 1. By adjoint action
Ad(eεv1v), if we take ε = a2

a3
, then v is equivalent to

v = v1 + a3v3 . (3.4)

— Subcase 2 : We put a4 = a1 = 0 and a5 = 1. By adjoint action
Ad(eεv5v), if we take ε = −a3

a2
, then v is equivalent to

v = a2v2 + v5 . (3.5)
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— Subcase 3 : We put a1 = a4 = a5 = 0. By adjoint action
Ad(eεv5v), if we take ε = −a3

a2
, then v is equivalent to

v = v2 , (3.6)

or by adjoint action Ad(eεv1v), if we take ε = a2
a3
, then v is equiv-

alent to
v = v3 . (3.7)

The optimal system of one-dimensional subalgebras is as follows:

a2v2 + v4 ,

v1 + v5 ,

v1 + a3v3 ,

a2v2 + v5 ,

v2 ,

v3 . (3.8)

We apply these subalgebras to (1.1) and find exact solutions.

4. Group invariant solutions

4.1. Exact solution using the generator v1 + a3v3

In this subsection, we consider the subalgebra v1+a3v3 and take a3 = 1.
In this case, the invariant surface conditions are given by

tuy + ut = −1 ,
tvy + vt = 70 . (4.1)

Solving (4.1), we find

u = −t+ g(x, r) ,

v = h(x, r) , (4.2)

where r = t2 − 2y. By substituting (4.2) into (1.1), we get

1− 2ggr + 4µgrr + λhgx + λµgxx = 0 ,

2hr + gx = 0 . (4.3)

To obtain the travelling wave solutions of (4.3), we suppose that

g = G(z) , h = H(z) , z = x+ ar . (4.4)
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Substituting (4.4) into (4.3), we obtain

1 + (λH − 2aG)G′ +
(
4µa2 + λµ

)
G′′ = 0 , (4.5a)

2aH ′ +G′ = 0 . (4.5b)

Integrating (4.5b) with respect to z, one finds

H = − 1

2a
G+ c1 . (4.6)

Let us substitute (4.6) into (4.5a), to get

1−
(
λ

2a
+ 2a

)
GG′ +

(
4µa2 + λµ

)
G′′ + c1λG

′ = 0 . (4.7)

By integrating (4.7) with respect to z, we find

z −
(
λ

2a
+ 2a

)
G2

2
+
(
4µa2 + λµ

)
G′ + λc1G = c2 , (4.8)

where c1 and c2 are integration constants. The solution of (4.8) is given by

G(z) =
C

2A
−
(
B

A2

) 1
3 Bi′(k) + c3Ai

′(k)

Bi(k) + c3Ai(k)
, (4.9)

where A = λ
4a+a, B = 4µa2+λµ, C = λc1, k = 1

4(AB)
2
3

(
C2 − 4Ac2 + 4Az

)
,

c3 is the integration constant, Ai(k) and Bi(k) are the Airy functions defined
by [29]

Ai(k) =
1

π

∞∫
0

cos

(
1

3
t3 + kt

)
dt ,

Bi(k) =
1

π

∞∫
0

[
e−

1
3
t3+kt + sin

(
1

3
t3 + kt

)]
dt . (4.10)

In this case, the solution of (1.1) is given by

u(x, y, t) = −t+ C

2A
−
(
B

A2

) 1
3 Bi′(k) + c3Ai

′(k)

Bi(k) + c3Ai(k)
,

v(x, y, t) = − a

2b

(
C

2A
−
(
B

A2

) 1
3 Bi′(k) + c3Ai

′(k)

Bi(k) + c3Ai(k)

)
+ c1 . (4.11)
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4.2. Exact solution using the generator a2v2 + v5

In this subsection, we consider the subalgebra a2v2+v5 and take a2 = 0.
In this case, the invariant surface conditions are given by

txux + tyuy + t2ut = −(tu+ y) ,

txvx + tyvy + t2vt = −
(
tv +

x

λ

)
. (4.12)

Solving (4.12), we find

u = −r
s
+

1

x
g(r, s) ,

v = − 1

λs
+

1

x
h(r, s) , (4.13)

where r = y
x , s =

t
x . Substituting (4.13) into (1.1), we get

g(2λµ− λh+ gr)

+λ
[
(4µ− h)(sgs + rgr) + µ

(
s2gss + r2grr + 2rsgrs

)]
+ µgrr = 0 ,

sgs + rgr + g + hr = 0 . (4.14)

To obtain the travelling wave solutions of (4.14), we assume that

h = H(z) , g = G(z) , z = r + s . (4.15)

Substituting (4.15) into (4.14), we find

G(2λµ− λH +G′) + λ
[
(4µ−H)zG′ + µz2G′′

]
+ µG′′ = 0 , (4.16a)

zG′ +G+H ′ = 0 , (4.16b)

where G′, G′′, H ′ andH ′′ are the derivative with respect to z. By integrating
(4.16b) with respect to z and considering the integration constant to be zero,
we obtain

H = −zG . (4.17)

Let us substitute (4.17) into (4.16a), to obtain

2λµ
[
G+ zG′

]
+ λµ

[
2zG′ + z2G′′

]
+ λ

[
zG2 + z2GG′

]
+GG′ + µG′′ = 0 .

(4.18)
By integrating (4.18) with respect to z and considering the integration con-
stant to be zero, we find

2λµzG+ λµz2G′ +
λ

2
z2G2 +

1

2
G2 + µG′ = 0 . (4.19)
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Equation (4.19) has the following solution:

G(z) =
2µ
√
λ

(1 + λz2)
(
2c1µ
√
λ+ tan−1

√
λz
) , (4.20)

where c1 is the integration constant. Finally, the solution of (1.1) is given by

u(x, y, t) = −y
t
+

2µ
√
λ

x
(
(1 + λz2)

(
2c1µ
√
λ+ tan−1

√
λz
)) ,

v(x, y, t) = − x

λt
− 2µ

√
λz

x
(
(1 + λz2)

(
2c1µ
√
λ+ tan−1

√
λz
)) . (4.21)

Now, we are interested in the infinite-dimensional subalgebra that is ignored
in optimal system calculations.

4.3. Exact solution using the generator vf

The invariant surface conditions, in this case, are given by

F (t)ux = 0 ,

F (t)vx = −F
′(t)

λ
. (4.22)

Solving (4.22), we find

u = g(y, t) ,

v = − F
′(t)

λF (t)
x+ h(y, t) . (4.23)

Substituting (4.23) into (1.1), we get

gt = ggy + µgyy , (4.24a)
hy = 0 . (4.24b)

Equation (4.24a) is the one-dimensional Burgers equation. This equation
has many famous solutions (see, for example, [28]) and we will not list them
here.
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4.4. Exact solution using a linear combination of vf , v1, v2
In this case, the invariant surface conditions are given by

F (t)ux + uy + ut = 0 ,

F (t)vx + vy + vt = −F
′(t)

λ
. (4.25)

Solving (4.25), we obtain

u = g(r, s) ,

v = −F (t)
λ

+ h(r, s) , (4.26)

where r = −y + t and s = −
∫
F (t) dt + x. Substituting (4.26) into (1.1),

we get

λhgs + λµgss − (1 + g)gr + µgrr = 0 ,

gs + hr = 0 . (4.27)

To obtain exact solutions of (4.27), we apply the Lie symmetry analysis to
it. In this case, we obtain the following infinitesimal generators:

Γ1 = −(g + 1)∂g − h∂h + r∂r + s∂s ,

Γ2 = ∂r ,

Γ3 = ∂s . (4.28)

We use these generators in the following subsection to obtain exact solutions
of (4.27).

4.4.1. The infinitesimal generator Γ1 of (4.27)

The solution of the invariant surface conditions, in this case, are given by

g(r, s) = −1 + 1

r
G(z) ,

h(r, s) =
1

r
H(z) , (4.29)

where z = s
r . Substituting (4.29) into (4.27), we find

G(2µ+G) + (4µz + zG+ λH)G′ + µ(z2 + λ)G′′ = 0 , (4.30a)
−H +G′ − zH ′ = 0 . (4.30b)
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Integrate (4.30b) and consider the constant of integration equal −µ to get

H =
G+ µ

z
. (4.31)

Substituting (4.31) into (4.30a), we obtain(
2µzG+ µz2G′

)
+ 1

2

(
2zG2 + 2z2GG′

)
+
(
3µz2G′ + µz3G′′

)
+
(
µλzG′′ + µλG′

)
+ λGG′ = 0 . (4.32)

By integrating (4.32) and considering the integration constant to be zero,
we find

µz2G+
1

2
z2G2 + µz3G′ + µλzG′ +

λ

2
G2 = 0 . (4.33)

Equation (4.33) has the following solution:

G(z) =
2µ
√
λ(√

z2 + λ
)(

2µc1
√
λ+ ln z

λ+
√
λz2+λ2

) , (4.34)

where c1 is the integration constant. In this case, the solution of (1.1) is
given by

u(x, y, t) = −1 + 2µ
√
λ

r
(√

z2 + λ
)(

2µc1
√
λ+ ln z

λ+
√
λz2+λ2

) ,
v(x, y, t) = −F (t)

λ
+

2µ
√
λ

s
(√

z2 + λ
)(

2µc1
√
λ+ ln z

λ+
√
λz2+λ2

) +
µ

s
. (4.35)

4.4.2. Travelling wave infinitesimal generator of (4.27)

In this subsection, we consider a linear combination of Γ2 and Γ3. In
this case, the solution of the invariant surface conditions is given by

h = H(z) , g = G(z) , z = r + as . (4.36)

Substituting (4.36) into (4.27), we find

λaHG′ +
(
λµa2 + µ

)
G′′ − (1 +G)G′ = 0 , (4.37a)

aG′ +H ′ = 0 . (4.37b)

Integrating (4.37b) with respect to z, we get

H = −aG+ c1 , (4.38)
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where c1 is the integration constant. Substituting (4.38) into (4.37a), we
obtain

−
(
λa2 + 1

)
GG′ + µ

(
λa2 + 1

)
G′′ + (λac1 − 1)G′ = 0 . (4.39)

Let us integrate (4.39) with respect to z, to obtain

G′ = A+BG+
1

2µ
G2 , (4.40)

where A = c2
µ(λa2+1)

and B = 1−λac1
µ(λa2+1)

. Equation (4.40) is the Riccati
equation that has the following solutions:

— Case 1 : the first solution is given by

G(z) = −Bµ−√µ
√
B2µ− 2A

× tanh

(√
B2µ− 2A

2
√
µ

z + c3
√
µ
√
B2µ− 2A

)
, (4.41)

and the corresponding solution of (1.1) in this case is given by

u(x, y, t) = −Bµ−√µ
√
B2µ− 2A

× tanh

(√
B2µ− 2A

2
√
µ

z + c3
√
µ
√
B2µ− 2A

)
,

v(x, y, t) = −F (t)
λ

+ aBµ+ a
√
µ
√
B2µ− 2A

× tanh

(√
B2µ− 2A

2
√
µ

z + c3
√
µ
√
B2µ− 2A

)
+ c1 ,

(4.42)

where c2 and c3 are arbitrary constants.

— Case 2 : The second solution is given by (when A = B = 0 or c2 = 0
and c1 = 1

aλ)

G(z) = − 2µ

z + c3
, (4.43)

and the exact solution of (1.1) in this case is given by

u(x, y, t) = − 2µ

z + c3
,

v(x, y, t) = −F (t)
λ

+
2aµ

z + c3
+

1

aλ
, (4.44)

where c1, c2 and c3 are the integration constants.
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5. Conclusion

In this paper, by using symmetry analysis method, the Lie algebra of
infinitesimal symmetry generators spanned by five-dimensional and infinite-
dimensional subalgebra is produced. The optimal system of the five-dimen-
sional subalgebras is computed. These generators are applied to obtain
some reduced equations and the exact solutions of the reduced equations
are obtained. We get some new exact similarity solutions of Eq. (1.1) in
the form of the Airy function (Eq. (4.11)), arctan function (Eq. (4.21)) and
logarithmic function (Eq. (4.35)).
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