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Recent developments in perturbative QCD leading to the beta function
in five-loop approximation are presented. In a first step, the two most im-
portant decay modes of the Higgs boson are discussed: decays into a pair
of gluons and, alternatively, decays into a bottom–antibottom quark pair.
Subsequently, the quark mass anomalous dimension is presented which is
important for predicting the value of the bottom-quark mass at high scales
and, consequently, the Higgs boson decay rate into a pair of massive quarks,
in particular into bb̄. In the next section, the α4

s corrections to the vector
and axial-vector correlators are discussed. These are the essential ingre-
dients for the evaluation of the QCD corrections to the cross section for
electron–positron annihilation into hadrons at low and at high energies, to
the hadronic decay rate of the τ lepton and for the Z-boson decay rate
into hadrons. Finally, we present the prediction for the QCD beta function
in five-loop approximation, discuss the analytic structure of the result and
compare with experiment at low and at high energies.
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1. Introduction

During the past years, significant progress has been made in the evalua-
tion of higher order QCD corrections to inclusive decay rates. Some of the
basic tools of these calculations were formulated already long time ago (see,
e.g. early reviews [1, 2]).

However, steady progress has been also achieved more recently, pushing
e.g. the evaluation of QCD corrections to scalar- and vector-current corre-
lators to O(α4

s ) and, correspondingly, the evaluation of decay rates of scalar
and vector particles to the same order [3–5]. Also, along the same line, the
evaluation of the QCD beta function has been pushed to the fifth order [6]
and, indeed, also this result has been confirmed (and extended to a generic
gauge group) by three new, independent calculations [7–9].

2. Dominant Higgs boson decay modes

The two most important decay modes of the Higgs boson are the top
quark mediated decay channel into two gluons and the decay into a bottom
plus antibottom quark (for a recent review, see [10]). The higher order
corrections to these modes have been evaluated up to O(α5

s ) [11, 12] for the
two-gluon channel (very recently even up to O(α6

s ) [5]) and up to O(α4
s )

for the bb̄ channel [3, 5]. Mixed terms related to the gg and the bb̄ mode
are treated in [13]. These two modes constitute the dominant Higgs decay
channels with branching ratios around 15% for the two-gluon and close to
60% for the bb̄ mode.

2.1. Higgs decay into two gluons

Let us start with the two-gluon channel. In the limit mt →∞, the part
of the effective Lagrangian which determines the coupling of the Higgs boson
to gluons is given by

Leff = −21/4G
1/2
F HC1

[
O′1
]
. (1)

Here, [O′1] is the renormalized counterpart of the bare operator

O′1 = G0′
aµνG

0′µν
a ,

with Gaµν standing for the colour field strength. The superscript 0 denotes
bare fields, and primed objects refer to the five-flavour effective theory. C1

stands for the corresponding renormalized coefficient function, which carries
all Mt dependence. Leff thus effectively counts the number of heavy-quark
species, which in the Standard Model is restricted to the top quark. In the
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Born approximation [14]

ΓBorn(H → gg) =
GFM

3
H

36π
√

2

(
α

(nl)
s (MH)

π

)2

. (2)

The leading order result, being proportional to α2
s , exhibits a strong scale de-

pendence which demonstrates the need for higher order corrections. Over the
years subsequently higher orders have been calculated, from NLO through
N2LO [15] up to N3LO [11, 12]. Quite recently, even the N4LO correc-
tions became available [5]. (Power-suppressed corrections of the order of
(mH/Mt)

n with n ≤ 5 were calculated up to N2LO and can be found in the
literature [16, 17].)

After a drastic increase of the cross section by about 60% from the NLO
corrections, the N2LO terms lead to a further increase of the decay rate by
about 20%. This was the motivation for the evaluation of the N3LO terms.
Using the optical theorem, the decay rate can be cast into the form of

Γ (H → gg) =

√
2GF

MH
C2

1 ImΠGG
(
q2 = M2

H

)
, (3)

where
ΠGG

(
q2
)

=

∫
eiqx〈0|T

([
O′1
]

(x)
[
O′1
]

(0)
)
|0〉dx . (4)

The combination [O′1] denotes the renormalized counterpart of the bare
operator O′1 = G0′

aµνG
0′µν
a and has been introduced above. The normaliza-

tion C1 is known to order N3O from massive tadpoles [18].
In total, one finds

Γ (H → gg) = ΓBorn(H → gg)×K (5)

with
K = 1 + 17.9167 a′s + 152.5

(
a′s
)2

+ 381.5
(
a′s
)3
. (6)

Here a′s = αs/π. It is quite remarkable that the residual scale dependence
is reduced quite drastically, from ±24% in LO to ±22% in NLO down to
±10% in N2LO and ±3% in N3LO.

2.2. Higgs decay into bottom quarks

The second and, in fact, dominant decay mode of the Higgs boson is the
bb̄ channel. The decay rate into a quark–antiquark pair, generically denoted
by ff̄ , is given by

Γ
(
H → f̄f

)
=
GFMH

4
√

2π
m2
f R̃
(
s = M2

H

)
, (7)
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where R̃(s) = ImΠ̃(−s − iε)/(2πs) stands for the absorptive part of the
scalar two-point correlator

Π̃
(
Q2
)

= (4π)2i

∫
dxeiqx〈0|T

[
JS
f (x)JS

f (0)
]
|0〉 . (8)

This five-loop result has been obtained in [3] and recently confirmed in
[5, 8, 9]. Strong cancellations are evident between “kinematical terms”, orig-
inating from the analytical transition from spacelike to timelike arguments,
and “dynamical terms”, intrinsic for the calculation in the timelike region.
In total, one finds

R̃ = 1 + 5.667 as + a2
s [51.57− 15.63− nf(1.907− 0.548)]

+a3
s

[
648.7− 484.6− nf(63.74− 37.97) + n2

f (0.929− 0.67)
]

+a4
s [9470.8− 9431.4− nf(1454.3− 1233.4)

+n2
f (54.78− 45.10)− n3

f (0.454− 0.433)
]
, (9)

where the underlined terms originate from the analytic continuation from
the spacelike to the timelike region. Evidently, the inclusion of the π2 terms
from higher orders alone does not improve the quality of the result. In
total, remarkable cancellations are observed between “kinematical” and “dy-
namical” terms, leading to a nicely “convergent” answer. For nf = 5, the
physically relevant result is given by

R̃
(
s = M2

H , µ = MH

)
= 1 + 5.667 as + 29.147 a2

s + 41.758 a3
s −825.7 a4

s

= 1 + 0.2040 + 0.0378 + 0.0019−0.00139 . (10)

In the last equation, we have substituted as(mH) = αs/π = 0.0360,
valid for a Higgs mass of 125 GeV and αs(MZ) = 0.118. The nearly com-
plete compensation between O(α3

s ) and O(α4
s ) term may be interpreted as

a consequence of an accidentally small coefficient of the α3
s term.

In total, this leads to a dominant contribution of the bb̄ mode with a
branching ratio close to 60%. Note that an important ingredient in this
context is the mass of the bottom quark at the scale of mH , which has been
taken as [19]

mb(mH) = 2771± 8|mb
± 15|αs MeV . (11)

Let us mention in passing that, in order α4
s , there are also interference cor-

rections resulting from mixed terms between H → gg and H → bb̄ which
have been evaluated in [13].
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3. Quark mass anomalous dimension

It is well-known that quark masses are conveniently defined to depend
on a renormalization scale

µ2 d

dµ2
m|g0,m0 = mγm(as) ≡ −m

∑
i≥0

γi a
i+1
s , (12)

with as = αs/π and the coefficients γi of the quark mass anomalous dimen-
sion γm are known from γ0 to γ4 and thus in five-loop order [20]. (At lower
orders, the γm was computed in [21–25].) In numerical form and for SU(3),
it is given by

γm =−as − a2
s (4.20833− 0.138889nf)

−a3
s

(
19.5156− 2.28412nf − 0.0270062n2

f

)
−a4

s

(
98.9434− 19.1075nf + 0.276163n2

f + 0.00579322n3
f

)
−a5

s

(
559.7069−143.6864nf +7.4824n2

f +0.1083n3
f −0.000085359n4

f

)
(13)

and, thus,

γm ===
nf=3

−as − 3.79167 a2
s − 12.4202 a3

s − 44.2629 a4
s − 198.907 a5

s ,

γm ===
nf=4

−as − 3.65278 a2
s − 9.94704 a3

s − 27.3029 a4
s − 111.59 a5

s ,

γm ===
nf=5

−as − 3.51389 a2
s − 7.41986 a3

s − 11.0343 a4
s − 41.8205 a5

s ,

γm ===
nf=6

−as − 3.37500 a2
s − 4.83867 a3

s + 4.50817 a4
s + 9.76016 a5

s .

Note the significant cancellations between the contributions for n0
f and

n1
f for values of nf around 4 and 5 which are clearly visible for the four-loop

result and persist in five-loop order. This leads to a moderate growth of the
series, even for scales as small as 2 GeV, where as ≡ αs/π ≈ 0.1. The strong
cancellations between different powers of nf have been anticipated by pre-
dictions based on “Asymptotic Padé Approximants” [26–28], the numerical
value of the result, however, differs significantly (see Table I).

Let us note in passing that quite recently the result for a general gauge
group has been obtained [29, 30].
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TABLE I

The exact results for (γm)4 together with the predictions made with the help of
the original APAP method and its two somewhat modified versions.

nf 3 4 5 6

(γm)exact4 198.899 111.579 41.807 −9.777

(γm)APAP
4 [26] 162.0 67.1 −13.7 −80.0

(γm)APAP
4 [27] 163.0 75.2 12.6 12.2

(γm)APAP
4 [28] 164.0 71.6 −4.8 −64.6

4. Z decay in O(α4
s )

In view of asymptotic freedom, perturbative QCD can be applied at
vastly different energy scales, despite the dramatic variation of the strong
coupling between the mass of the τ lepton and, for example, the mass of the
Z boson. Starting, for example, at the scale of the τ lepton with

αs(mτ ) = 0.332± 0.005|exp ± 0.015|th (14)

four loop running and matching at the flavour thresholds lead to the reduc-
tion of the strong coupling at the scale of the Z-boson mass [4]

αs(MZ) = 0.1202± 0.006|exp ± 0.0018|th ± 0.0003|evol (15)

by a factor three and a reduction of the uncertainties by nearly a factor ten.
In this case, the evolution error receives contributions from uncertainties
in the charm- and bottom-quark mass, the variation of the matching scale
and the four-loop truncation of the renormalization group equation. The
final result is in remarkable agreement with the direct determination of αs

from Z decays which leads to αs = 0.1190 ± 0.0026|exp and a small theory
error. Note that the dominant term in the QCD corrections for Z decays is
identical to the correction term for τ decays. However, starting from O(α2

s ),
one receives additional, new terms in the Z boson case. These arise from
the so-called singlet contributions which, in turn, are different for the vector
and the axial-vector part.

In total, one finds for the QCD corrected decay rate of the Z boson
(neglecting for the moment mass suppressed terms of O(m2

b/M
2
Z) and elec-

troweak corrections)

Rnc = 3

∑
f

v2
fr

V
NS +

∑
f

vf

2

rV
S +

∑
f

a2
fr

A
NS + rA

S;t,b

 . (16)
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The relative importance of the different terms (Fig. 1) is best seen
from the results of the various r-ratios introduced above. In the numeri-
cal form [31]

rV
NS = rA

NS = 1 + as + 1.4092 a2
s − 12.7671 a3

s − 79.9806 a4
s ,

rV
S = −0.4132 a3

s − 4.9841 a4
s ,

rA
S:t,b = (−3.0833 + lt) a

2
s +

(
−15.9877 + 3.7222 lt + 1.9167 l2t

)
a3

s

+
(
49.0309− 17.6637 lt + 14.6597 l2t + 3.6736 l3t

)
a4

s , (17)

with as = αs(MZ)/π and lt = ln(M2
Z/M

2
t ). Using for the pole mass Mt the

value 172 GeV, the axial singlet contribution in numerical form is given by

rA
S;t,b = −4.3524 a2

s − 17.6245 a3
s + 87.5520 a4

s . (18)

The significant decrease of the scale dependence is evident from Fig. 2.

t,b t,b

(a) (b) (c)

Fig. 1. Different contributions to r-ratios: (a) non-singlet, (b) vector singlet and
(c) axial vector singlet.

Let us recall the basic aspects of these results:

— The non-singlet term dominates all different channels. It starts in
the Born approximation and is identical for τ decay, for σ(e+e− →
hadrons) through the vector current (virtual photon) and for Γ (Z →
hadrons) through vector and axial current.

— The singlet axial term starts in order α2
s , is present in Z → hadrons

and depends on lnM2
Z/M

2
t . Its origin is the strong imbalance between

the masses of top and bottom quark [32].

— The singlet vector term is present both in γ∗ → hadrons and Z →
hadrons and starts in O(α3

s ).

— All three terms are known up to order α4
s and the total rate is remark-

ably stable under scale variations.
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Fig. 2. Scale dependence of (a) non-singlet rNS; (b) vector singlet rVS and (c) axial
vector singlet rAS;t,b. Dotted, dash-dotted, dashed and solid curves refer to O(αs) up
to O(α4

s ) predictions. αs(MZ) = 0.1190 and nl = 5 is adopted in all these curves.
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5. Five-loop β function

Asymptotic freedom, manifest by a decreasing coupling with increasing
energy, can be considered as the basic prediction of the non-Abelian gauge
theories and was crucial for establishing QCD as the theory of strong inter-
actions. The dominant, leading order prediction [33, 34] was quickly followed
by the corresponding two- [35, 36] and three-loop [23, 37] results. Subsequen-
tly, it took more than 15 years until the four-loop result was evaluated [38]
and another seven years until this result was confirmed by an independent
calculation [39]. Now, finally, the five-loop result for QCD became available
[6], quickly confirmed and generalized to an arbitrary gauge group [7–9].

There are several reasons to push the QCD β function to an order as
high as possible. From the practical side, it is important to compare ex-
periment and theory prediction with the best achievable precision. From
the theoretical side, one expects that the perturbative series at some point
starts to demonstrate its asymptotic divergence, shown by significantly in-
creasing terms. However, as shown below, even up to the fifth order, the
series exhibits a remarkably smooth behaviour with continuously decreasing
perturbative coefficients. Let us, in a first step, recall the coefficients of the
QCD β function defined by

β(as) = µ2 d

dµ2
as(µ) = −

∑
i≥0

βia
i+2
s . (19)

Using the same tools as those discussed in [4, 20], the β function in fifth
order is given by

β0 =
1

4

{
11− 2

3
nf ,

}
, β1 =

1

42

{
102− 38

3
nf

}
,

β2 =
1

43

{
2857

2
− 5033

18
nf +

325

54
n2

f

}
,

β3 =
1

44

{
149753

6
+ 3564ζ3 −

[
1078361

162
+

6508

27
ζ3

]
nf

+

[
50065

162
+

6472

81
ζ3

]
n2

f +
1093

729
n3

f

}
,

β4 =
1

45

{
8157455

16
+

621885

2
ζ3 −

88209

2
ζ4 − 288090ζ5

+nf

[
−336460813

1944
− 4811164

81
ζ3 +

33935

6
ζ4 +

1358995

27
ζ5

]
+n2

f

[
25960913

1944
+

698531

81
ζ3 −

10526

9
ζ4 −

381760

81
ζ5

]
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+n3
f

[
−630559

5832
− 48722

243
ζ3 +

1618

27
ζ4 +

460

9
ζ5

]
+n4

f

[
1205

2916
− 152

81
ζ3

]}
.

This result has, in the meantime, been confirmed in [7–9] and even ex-
tended to an arbitrary, simple, compact Lie group. The surprising pattern of
the delayed appearance of higher transcendentals, already observed in lower
orders, repeats itself in the present case: The transcendental numbers ζ6 and
ζ7 that could be present in β4 in principle, are evidently absent, similarly to
the absence of ζ4 and ζ5 in the result for β3.

Let us reemphasize the surprising smallness of the perturbative coeffi-
cients, characterized by the small deviations from the leading order result.
Consider the ratio β̄ ≡ β

−β0a2s
= 1 +

∑
i≥1 β̄ia

i
s for two characteristic values

of nf :

β̄(nf = 4) = 1 + 1.54 as + 3.05 a2
s + 15.07 a3

s + 27.33 a4
s ,

β̄(nf = 5) = 1 + 1.26 as + 1.47 a2
s + 9.83 a3

s + 7.88 a4
s .

Indeed, an extremely modest growth of the perturbative coefficients is ob-
served. Remarkably enough, the rough pattern of the coefficients is indeed
in qualitative agreement with the expectations for the nf dependence of β4

based on the method of “Asymptotic Padé Approximant” [26] (the boxed
term was used as an input):

βAPAP
4 ≈ 740− 213nf + 20n2

f − 0.0486n3
f − 0.001799n4

f ,

βexact
4 ≈ 524.56− 181.8nf + 17.16n2

f − 0.22586n3
f − 0.001799n4

f .

However, large cancellations occur for nf = 3, 4, 5, leading to drastic dis-
agreement for the final predicitions for the corresponding values of β4.

As stated before, the smallness of the higher order coefficients, in par-
ticular for the nf values of interest, leads to a remarkable stabilization of
the results. The excellent agreement between αs values from vastly different
energy scales indeed persists in higher orders. Let us, as a typical exam-
ple, recall the comparison between the strong coupling at the scales of mτ

and MZ . Starting with the value αs(mτ ) = 0.33 ± 0.014, one arrives, af-
ter running and matching at the charm and bottom threshold at the value
α

(5)
s = 0.1198 ± 0.0015. From the direct measurement of Z-boson decays

combined in the electroweak precision data, on the other hand, one obtains
the result α(5)

s = 0.1197±0.0028 in remarkable agreement with the previous
value.



Higgs Decay, Z Decay and the QCD Beta Function 2145

6. Summary

A sizable number of four- and five-loop QCD results has been evaluated
during the past years. O(α4

s ) corrections of Higgs boson decays to fermions,
of τ -lepton decays to hadrons, Z decays to hadrons and of corrections to
the familiar R ratio (with R ≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−)) are
among the most prominent examples. These calculations have been comple-
mented by the most recent result along the same lines, the five-loop QCD β
function. No sign of an onset of the asymptotically expected divergence of
the series is observed. Excellent agreement between theory and experiment
for a large number of predictions is observed. For the moment, the preci-
sion of the theoretical prediction is significantly ahead of the experimental
results.
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