
Vol. 48 (2017) ACTA PHYSICA POLONICA B No 12

MASSLESS FOUR-LOOP FORM FACTORS∗

Matthias Steinhauser

Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe, Germany

(Received November 8, 2017)

In this contribution we briefly discuss the status of the calculation of
the four-loop massless form factors.
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1. Introduction

In QCD, form factors are building blocks for many physical quantities,
most prominently for Higgs boson production and the Drell–Yan process.
Furthermore, they are the simplest infra-red divergent objects and are thus
used to study general properties of QCD and to develop a deeper insight
into the infra-red properties.

In this contribution, we consider the massless photon quark vertex, Γµq
and QCD corrections up to four loops to the corresponding form factor which
is obtained via

Fq
(
q2
)
= − 1

4(1− ε)q2
Tr
(
/p2Γ

µ
q /p1γµ

)
. (1)

In this formula, D = 4 − 2ε is the space-time dimension, p1 and p2 are the
incoming momenta of the quark and anti-quark, respectively, and q = p1+p2
is the photon momentum.

Three-loop corrections to Fq(q2) have been computed for the first time
in Ref. [1] and afterwards confirmed in [2]. In the final expression presented
in these references, the highest ε coefficients of the three most complicated
master integrals were only known numerically. Their analytic expressions
have been provided in [3].

First results at four-loop order have been obtained in Refs. [4, 5] where
all planar contributions to Fq have been computed. This provides a complete
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result in the large-Nc limit. Note that the corrections with three closed quark
loops have been computed in Ref. [6]. Let us also mention the work [7], where
the 1/ε2 pole of the four-loop form factor within N = 4 super Yang–Mills
theory has been computed using numerical methods.

In this contribution, we concentrate on the fermionic terms to Fq with
two closed fermion lines. This part receives planar and non-planar contri-
butions which have been computed in Ref. [8].

In the next section, we briefly comment on the individual steps of the
calculation and present analytic results in Section 3.

2. Calculation

Sample Feynman diagrams which contribute to the massless four-loop
form factor are shown in Fig. 1. The first two diagrams represent purely
gluonic planar contributions, which have been computed in Refs. [4, 5] and
the last one represents one of the most complicated non-planar diagrams with
two (massless) fermion insertions. A crucial step in the course to compute
these diagrams is the identification of a (scalar) integral family for each Feyn-
man amplitude. For the planar contributions, there are 38 families which
have been classified in Refs. [4, 5]. In general, the non-planar families are
more complicated and have not yet been identified by our group. However,
in the case of the n2f terms, there are only two non-planar families which are
shown in Fig. 2. Note that for the n2f amplitudes, many lines of the families
in Fig. 2 are absent. However, in Ref. [8], all master integrals which belong
to the two families have been computed. It is expected that all of them are
needed for the nf -independent four-loop form factor.

Fig. 1. Sample Feynman diagrams. For the n2f contribution, also non-planar con-
tributions are considered.

Once the integral families are classified, the input files for FIRE [9, 10]
and LiteRed [11, 12] can be generated which perform the reduction to master
integrals. Then the main task is the analytic evaluation of the latter. In the
following, we briefly summarize the basic ideas which enter this part of the
calculation.

— Differential equations are a powerful tool to compute master inte-
grals [13–16]. Since we have a one-scale problem at hand and thus
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Fig. 2. Non-planar families needed for the n2f contribution.

no dimensionless ratio can be formed, a further mass scale has to be
introduced in order to be able to use the differential equation method.
One possible choice is p22 = xq2 6= 0. Note that for x = 1, the integrals
become massless two-point integrals which are available in the litera-
ture [17–19]. We will use this point for fixing the initial conditions.
For the form factor, we need the master integrals for x = 0.
A non-vanishing q22 increases the number of master integrals. Further-
more, a more complicated reduction problem (with two dimensionful
scales) has to be solved.

— A further crucial ingredient is the choice of basis. It has been suggested
in [16] (see also Ref. [20]) to choose a so-called canonical basis where
the differential equation for the master integrals has the form of

g′(x, ε) = εA(x) · g(x, ε) , (2)

where the matrix A(x) is ε-independent and only has simple poles of
the form 1/(x − xi). In our case, we only have two such terms with
x0 = 0 and x1 = 1.
We transform our primary basis (chosen by FIRE) to a canonical basis
with the help of the algorithm presented in Ref. [21].

— It is simple to obtain the general solution of Eq. (2) in terms of Har-
monic Polylogarithms (HPL) [22, 23]. Afterwards, we fix the boundary
conditions for x = 1 using the analytic results from [18] and obtain
analytic results for the (two-scale) master integrals. Next, the limit
x→ 0 has to be considered. This is more complicated than one might
expect since this limit has to be taken in the “naive” sense. This means
that terms like xkε should be kept unexpanded and then terms with
k = 0 have to be selected. Thus, simply expanding the analytic re-
sult does not work. Instead, we go back to the differential equation in
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Eq. (2). For x→ 0, it takes the form of

g′(x, ε) = ε
a

x
· g(x, ε) , (3)

where all matrix elements of a are just numbers. The solution of this
equation reads

gx→0 = xεah(ε) , (4)

where xεa is a matrix where each element is a linear combination of
xkε with k ≤ 0. The column vector h(ε) is obtained by comparing the
original analytic results and gx→0 after a Taylor expansion for x→ 0.

— The sought-after master integrals in the primary basis are obtained by
substituting gx→0|x0ε and taking the limit x→ 0.

3. Some selected results

After inserting the analytic results for the master integrals into the am-
plitude, we expand in ε and obtain results for the form factor up to the finite
term. From the 1/ε2 pole, it is possible to extract four-loop results for the
cusp anomalous dimension

γcusp =
∑
n≥0

(
αs

(
µ2
)

4π

)n
γncusp , (5)

which reads

γ3cusp =

(
128π2ζ3

9
+ 224ζ5 −

44π4

27
− 16252ζ3

27
+

13346π2

243
− 39883

81

)
N2

c nf

+

(
−32ζ23 −

176π2ζ3
9

+
20992ζ3

27
− 352ζ5 −

292π6

315
+

902π4

45

−44416π2

243
+

84278

81

)
N3

c + n2f

[
CA

(
2240ζ3
27

− 56π4

135
− 304π2

243

+
923

81

)
+ CF

(
−640ζ3

9
+

16π4

45
+

2392

81

)]
+

(
64ζ3
27
− 32

81

)
n3f .

(6)

Note that in this expression, the n3f and n2f terms are complete and contain
the colour factors CA and CF. On the other hand, for the linear nf and the
nf -independent terms, only the leading Nc terms are shown. The n3f terms
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have already been computed in Refs. [24, 25] and all other contributions
in Eq. (6) have been obtained independently in Refs. [26, 27]. Numerical
results for all other colour coefficients can be found in Ref. [27].

Analytic results for the collinear anomalous dimension and the finite part
of the form factor can be found in Refs. [4, 5, 8].
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