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BOUNDS ON MH± FROM B̄ → Xs,dγ DECAYS∗
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Weak radiative B-meson decays are known to provide strong bounds
on the charged Higgs boson mass in the Two-Higgs-Doublet Model. In the
so-called Model-II, the 95% C.L. lower bound on MH± is now in the 570–
800 GeV range, depending quite sensitively on the method applied for its
determination. Here, we present and discuss the updated bounds.
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One of the simplest extensions of the Standard Model (SM) is con-
structed by extending its Higgs sector via introduction of another SU(2)weak

doublet. There are several versions of the Two-Higgs-Doublet Model (2HDM).
In the so-called Model-I, fermions receive their masses from Yukawa cou-
plings to only one of the two Higgs doublets. In Model-II, one of the doublets
gives masses to the up-type quarks, while the other one gives masses to the
down-type quarks and the leptons. The physical spin-zero boson spectrum
contains a charged scalar H±.

As it is well-known (see, e.g., Ref. [1]), strong constraints on the mass
of H± follow from measurements of the inclusive weak radiative B-meson
decay branching ratio. The most precise results come from the Belle Col-
laboration, especially from their most recent analysis [2]. Their updated
result is now below the Standard Model prediction [3, 4], though it remains
consistent with it. On the other hand, the 2HDM effects in Model-II can
only enhance the decay rate. In consequence, the lower bound on MH±

in this model becomes very strong, reaching the range of 570–800 GeV. At
the same time, the bound becomes very sensitive to the method applied for
its determination. Here, we present and discuss the current bounds, evalu-
ated including the most recent experimental results and updated theoretical
calculations. More details can be found in [5].
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Following Eqs. (1.1) and (1.2) of Ref. [4], as well as Eq. (9) of Ref. [3], we
use the CP- and isospin-averaged branching ratios Bsγ and Bdγ of the weak
radiative decays, normalizing them to the analogously averaged branching
ratio Bc`ν of the semileptonic decay. The main observable for our consider-
ations is the ratio Rγ = (Bsγ + Bdγ) /Bc`ν ≡ B(s+d)γ/Bc`ν . The radiative
decays we are interested in proceed dominantly via quark-level transitions
b→ sγ, b→ dγ, and their C conjugates. A suppression by small Cabibbo–
Kobayashi–Maskawa (CKM) angles makes Bdγ about 20 times smaller than
Bsγ . For definiteness, we shall discuss Bsγ in what follows, making separate
comments on Bdγ wherever necessary.

Theoretical analyses of rare B-meson decays are most conveniently per-
formed in the framework of an effective theory that arises after decou-
pling the W -boson and all the heavier particles at the renormalization scale
µ0 ∼ mt. In the effective theory below µ0, the relevant weak interaction
Lagrangian takes the form of Lweak ∼

∑
iCiQi, where Qi are dimension-five

and -six operators of either four-quark or dipole type. A complete list of Qi
that matter in the SM or 2HDM at the Leading Order (LO) in αem can be
found in Eq. (1.6) of Ref. [4]. Their Wilson coefficients Ci(µ0) are evaluated
perturbatively in αs by matching several effective-theory Green’s functions
with those of the SM or 2HDM. Such calculations have now reached the
Next-to-Next-to-Leading Order (NNLO) accuracy in QCD [6, 7]. In the next
step, the Wilson coefficients are evolved according to their renormalization
group equations down to the scale µb ∼ mb, in order to resum large loga-
rithms of the form of

(
αs ln(µ2

0/µ
2
b)
)n ∼ (αs ln(m2

t /m
2
b)
)n. At the NNLO,

anomalous dimension matrices up to four loops [8] had to be determined.
While the calculations of Ci(µb) are purely perturbative, one needs to

take nonperturbative effects into account when determining the physical
decay rates. For B̄ → Xsγ (with B̄ denoting either B̄0 or B−), the decay
rate is a sum of the dominant perturbative contribution and a subdominant
nonperturbative one δΓnonp, i.e.

Γ
(
B̄ → Xsγ

)
= Γ (b→ Xp

s γ) + δΓnonp , (1)

where a photon energy cutoff Eγ > E0 in the decaying particle rest frame is
imposed on both sides. The nonperturbative contribution δΓnonp in Eq. (1)
is strongly dependent on E0. For E0 = 1.6 GeV, it shifts the SM prediction
for Bsγ by almost +3% [9], while the corresponding uncertainty is estimated
at the ±5% level [10]. For higher values of E0, theoretical uncertainties grow,
while the experimental ones decrease thanks to lower background subtraction
errors. To resolve this issue, it has become standard to perform a data-
driven extrapolation of the experimental results down to E0 = 1.6 GeV, and
compare with theory at that point.
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A few comments about such an extrapolation need to be made. First, it is
instructive to have a look at Fig. 1 of Ref. [2] which presents the background-
subtracted photon energy (E∗

γ) spectrum in the Υ (4S) frame, as determined
by Belle in Ref. [2]. Photon energies Eγ in the B-meson rest frame differ
from E∗

γ by boost factors not exceeding 1.07. One can see that energies
below 2 GeV are well in the tail of the spectrum. On the other hand, a large
set of measurements that gives quite a precise weighted average for B(s+d)γ

is available already at E0 = 1.9 GeV (see below). Thus, the extrapolation
we need is a short one, and only in the tail of the spectrum.

To understand the growth of theoretical uncertainties with E0, one be-
gins with considering the case when C7 is assumed to be the only nonva-
nishing Wilson coefficient at the scale µb. In such a case, the fixed-order
Heavy Quark Effective Theory (HQET) formalism can be used to show that
[11–13][

δΓnonp

Γ (b→ Xp
s γ)

]
only C7

= −
µ2
π + 3µ2

G

2m2
b

+O
(

αsΛ
2

(mb − 2E0)2 ,
Λ3

m3
b

)
, (2)

provided mb − 2E0 � Λ with Λ ∼ ΛQCD. The quantities µ2
π and µ2

G
are of the order of Λ2, and are currently quite well-known from fits to the
measured semileptonic decay spectra [14]. With growing E0, at some point
one enters into the region, where mb − 2E0 ∼ Λ and the fixed-order HQET
calculation is no longer applicable. Instead, the leading nonperturbative
effect is parameterized in terms of a universal shape function [15, 16]. We
need to rely on models for this function, which is the main reason why the
theory uncertainties grow with E0.

A number of shape-function models have been invented in the past, with
their parameters constrained by measurements of the semileptonic and ra-
diative B-meson decay spectra — see, e.g., Refs. [17, 18]. In Fig. 13 of
Ref. [18], one can see that the B̄ → Xsγ photon energy spectrum becomes
quite unique already at Eγ = 1.9 GeV, at least for the considered class of
models. Such a uniqueness is indeed expected below the point where the
shape-function description starts to overlap with the fixed-order HQET de-
scription. Our present approach relies on the assumption that E0 = 1.6 GeV
is definitely below this point.

Effects of extrapolations from E0 to 1.6 GeV can be parameterized by

∆q ≡
Bqγ(1.6)

Bqγ(E0)
− 1 , (3)

with q = s, d or s+ d. Numerical values of this quantity obtained with the
help of various methods are presented in Table I. Those denoted by ∆BF

s

were evaluated in Ref. [19] where the measured semileptonic and radiative
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B-meson decay spectra were used to determine the b-quark mass mb and
the parameter µ2

π in three different renormalization schemes. Next, these
parameters were inserted into the Kagan–Neubert shape function model [17].
The shape function was then convoluted with the perturbatively calculated
photon energy spectrum in the b-quark decay, which led to a prediction for
the physical photon energy spectrum in the B-meson decay.

TABLE I

Quantities ∆q from Eq. (3) evaluated using various approaches.

E0 [GeV] ∆BF
s ∆Belle

s ∆fix
s ∆fix

s+d ∆fix
d

1.7 (1.5± 0.4)% ? 1.3% 1.5% 5.3%
1.8 (3.4± 0.6)% (3.69± 1.39)% 3.0% 3.4% 10.5%
1.9 (6.8± 1.1)% ? 5.5% 6.0% 15.7%
2.0 (11.9± 2.0)% ? 10.0% 10.5% 22.5%

In the next column of Table I, the quantities ∆Belle
s were obtained in

Ref. [2] using essentially the same method but with the radiative spectrum
only, as measured in the very analysis of Ref. [2]. In that case, only the
result for E0 = 1.8 GeV is publicly available at present.

The last three columns of Table I have been obtained using the approach
of Refs. [3, 4], in which case the photon energy spectrum is determined
mainly by the perturbative gluon bremsstrahlung. In these cases, no uncer-
tainties are quoted, as we do not know at which E0 the fixed-order HQET
description breaks down. The subleading O(αsΛ

2) nonperturbative correc-
tions [20] begin to rapidly increase at E0 around 1.8 GeV due to (mb−2E0)2

in their denominators. The quantities ∆fix
q involve effects of the photon

bremsstrahlung in decays of the b quark to three light (anti)quarks, as cal-
culated in Refs. [21, 22]. Such effects are small in Bsγ (unless one goes well
below E0 = 1.6 GeV) but become much more relevant in Bdγ , where the
tree-level b→ duūγ transitions are not CKM-suppressed with respect to the
leading b → dγ one. In effect, ∆fix

d are visibly different from ∆fix
s . How-

ever, ∆fix
s+d is not much different from ∆fix

s due to the dominance of Bsγ over
Bdγ . Such photon bremsstrahlung effects involve collinear singularities in
the limit of vanishing quark masses, which signals the presence of nonper-
turbative effects [23]. Fortunately, their overall suppression factors in Bsγ
and B(s+d)γ are strong enough, and the corresponding uncertainties are far
below the dominant nonperturbative ones. In the following, we shall use
∆BF
s for the extrapolation of Bsγ . As far as the extrapolation of B(s+d)γ is

concerned, we are going to rescale ∆BF
s according to the fixed-order results,

namely use ∆BF
s+d ≡ ∆BF

s ×∆fix
s+d/∆

fix
s .
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For the evaluation of Γ (b→ Xp
s γ) at the NNLO level, we can restrict our

attention to the current–current operators Q1,2 and the dipole ones Q7,8, as
the remaining ones can be neglected due to their small Wilson coefficients.
The Q7–Q7 and Q7–Q8 interference terms are already known at O(α2

s ) in a
complete manner [24–28]. The NNLO interference terms not involving Q7

can be separated into known two-body final-state contributions or relatively
small (n ≥ 3)-body final-state contributions that have been calculated so
far [29–31] only in the Brodsky–Lepage–Mackenzie (BLM) [32] approxima-
tion. The main perturbative uncertainty comes from the Q1,2–Q7 interfer-
ences at O(α2

s ). Their BLM parts, as well as effects of nonvanishing quark
masses on the gluon lines were evaluated in Refs. [29, 33, 34] for arbitrary
values of the charm quark mass mc. The remaining parts were found only in
the limits mc � mb/2 [35] or mc = 0 [4], and then an interpolation between
these two limits was performed [4].

With all the NNLO QCD, NLO EW and nonperturbative corrections
evaluated to date, the SM prediction for Rγ at E0 = 1.6 GeV reads [3]

RSM
γ = (3.31± 0.22)× 10−3 , (4)

where the overall uncertainty has been obtained by combining in quadra-
ture the nonperturbative one (±5%), the parametric one (±1.5%), the one
stemming from neglected higher order effects (±3%), and the one due to the
above-mentioned interpolation in mc (±3%).

In the 2HDM, additional contributions to the Wilson coefficient matching
arise from diagrams with the physical charged scalar exchanges. The relevant
couplings and sample diagrams can be found, e.g., in Sec. 2.3 of Ref. [7].
Apart from the SM parameters, the results depend only on MH± and tanβ.
They are plotted in Fig. 1 as functions of MH± in two cases of particular
interest: Model-I with tanβ = 1 and Model-II with tanβ = 50. The solid
and dashed curves in these plots correspond to the 2HDM and SM cases,
respectively. Dotted lines indicate the experimental average to be discussed
below.

In Model-I, the charged Higgs contribution to the decay amplitude is
proportional to cot2 β, and it interferes with the SM one in a destructive
manner. In Model-II, the interference is always constructive, and the charged
Higgs amplitude has the form of A + B cot2 β. The quantities A and B
depend on MH± only, and they have the same sign. In consequence, an
absolute bound on MH± can be derived from Rγ in Model-II by setting the
cot2 β term to zero.

Our averages of all the available measurements of B(s+d)γ and Bsγ are col-
lected in Table II. The results of BaBar have been obtained using three meth-
ods: fully inclusive [36], semi-inclusive [37], and the hadronic-tag one [38].
Belle has used the fully inclusive [2] and semi-inclusive [39] approaches. In
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Fig. 1. Rγ at E0 = 1.6 GeV as a function of MH± in Model-I with tanβ = 1 (left)
and in Model-II with tanβ = 50 (right). Middle lines show the central values, while
the upper and lower ones are shifted by ±1σ. Solid and dashed curves correspond
to the 2HDM and SM predictions, respectively. Dotted lines show the experimental
average Rexp

γ = (3.22± 0.15)× 10−3 (see the text).

the measurement of CLEO [40], the fully inclusive method was used. Belle
and CLEO provided their B(s+d)γ results explicitly, while BaBar rescaled
them to Bsγ , quoting in each case the necessary CKM factor together with
its uncertainty. In Table II, we “undo” the rescaling using precisely the
same factors. On the other hand, in the two semi-inclusive cases, we derive
B(s+d)γ from Bsγ using a rescaling factor (1.047 ± 0.003) that we calculate
at E0 = 1.9 GeV as in Refs. [3, 4].

TABLE II

Averages of the experimental results for Bsγ × 106 (upper rows) and B(s+d)γ × 106

(lower rows) at each value of E0. Each world average (w.a.) is first calculated at
E0 (5th column), and then extrapolated to 1.6 GeV (6th column) using ∆BF

s or
∆BF
s+d (see Table I). In the last two columns, the ratios Rγ(×105) are calculated

from the corresponding averages for B(s+d)γ using Bc`ν = 0.1067(16).

BaBar Belle CLEO w.a. w.a. Rγ Rγ
E0 [36–38] [2, 39] [40] (E0) (1.6) (E0) (1.6)

1.7 306(28) 306(28) 311(28)
320(29) 320(29) 326(30) 300(28) 305(28)

1.8 321(34) 301(22) 307(19) 318(19)
335(35) 315(23) 321(19) 333(20) 301(19) 312(19)

1.9 308(22) 305(16) 306(13) 327(14)
321(23) 319(17) 320(14) 343(15) 300(14) 322(15)

2.0 283(18) 279(15) 293(46) 281(11) 315(14)
296(19) 292(15) 306(49) 294(11) 331(14) 276(11) 310(14)
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The reader is referred to the original experimental papers [2, 36–40] for
the decomposition of errors into the statistical, systematic and occasionally
the spectrum-modeling ones. Here, we have added them in quadrature for
the purpose of determining our naive averages, in which no correlations have
been taken into account. At E0 = 1.9 GeV (without extrapolation), we find
agreement with the averages of HFLAV [41] where, we believe, the relevant
correlations have been included.

Comparing the uncertainties in the four alternative averages for Rγ at
E0 = 1.6 GeV in the last column of Table II, one can see that the first two of
them are less accurate. Thus, at the moment, the balance of the background
subtraction and extrapolation uncertainties points towards using the results
extrapolated from 1.9 or 2.0, at least when one takes the errors from Ref. [19]
for granted. Since there is not much difference in the uncertainties of these
two averages, we suggest discarding the 2.0 one, as it requires a longer
extrapolation. Thus, we recommend adopting

Rexp
γ = (3.22± 0.15)× 10−3 (5)

as the current experimental average for Rγ at E0 = 1.6 GeV.
Let us now use Rγ to derive bounds on MH± in the 2HDM. We are

going to treat all the uncertainties as stemming from Gaussian probability
distributions, which is obviously an ad hoc assumption, although consis-
tent with combining various partial uncertainties in quadrature. To include
the theory uncertainties, one follows the standard confidence belt construc-
tion [42]. For each MH± , one considers a Gaussian probability distribution
around the theoretical central value, with its variance obtained by com-
bining the experimental and theoretical uncertainties in quadrature. Next,
a confidence interval corresponding to (say) 95% integrated probability is
determined. It can be placed either centrally (for a derivation of 2-sided
bounds), or maximally shifted in either way (for 1-sided bounds), or in an
intermediate way, like in the Feldman–Cousins (FC) approach [43]. It is
the freedom of the confidence interval placement that makes the resulting
bounds on MH± somewhat ambiguous. If we choose the FC intervals, low
values of Rexp

γ can never lead to exclusion of Model-II in its whole parame-
ter space. If we choose the upper 1-sided intervals, our method is actually
equivalent to using the experimental upper bound on Rexp

γ rather than the
actual measurement.

In Table III, we present the bounds we obtain following three different
methods, and using three out of four averages for Rexp

γ from Table II. The
rows corresponding to our preferred choice (Eq. (5)) are displayed in bold.
For Model-I we set tanβ = 1, while the absolute bounds (cotβ → 0) are
shown for Model-II. In the Model-I case, the lower rather than the upper
1-sided intervals are employed. It is interesting to observe that stronger
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TABLE III

Bounds on MH± obtained using different methods (see the text).

Model Rexp
γ × 103 95%C.L. bounds 99%C.L. bounds

1-s 2-s FC 1-s 2-s FC

3.05± 0.28 307 268 268 230 208 208
I 3.12± 0.19 401 356 356 313 288 288

(tanβ = 1) 3.22 ± 0.15 504 445 445 391 361 361

3.05± 0.28 740 591 569 477 420 411
II 3.12± 0.19 795 645 628 528 468 461

(absolute) 3.22 ± 0.15 692 583 580 490 440 439

bounds on MH± in Model-II are found from the two less precise averages,
just because their central values turn out to be lower. These averages are less
sensitive to the E0-extrapolation issues. The situation in Model-I is reverse
— the most precise average gives the strongest bounds. By coincidence, our
2-sided 95%C.L. bound of 583 GeV in Model-II practically overlaps with the
580 GeV one that has been obtained in Ref. [2] from their single measure-
ment alone (giving B(s+d)γ with a lower central value but larger uncertainty
than the one corresponding to our Eq. (5)). Since this bound is also the
most conservative one, we suggest choosing it for updated combinations
with constraints from other observables.

To conclude, we derived updated constraints on MH± in the 2HDM that
get imposed by measurements of the inclusive weak radiative B-meson decay
branching ratio.

Partial support from the National Science Centre, Poland (NCN) re-
search project, decision No. DEC-2014/13/B/ST2/03969 is gratefully ac-
knowledged.
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