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THE ONE-LOOP IMPROVED LAGRANGIAN
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Adding a single gauge singlet fermion and a second Higgs doublet to the
original Standard Model allows an explanation for the observed smallness
of the neutrino masses using the seesaw mechanism. This model predicts
two neutral fermions with vanishing mass. The one-loop contribution to
the neutral fermion masses due to the second Higgs doublet lifts this degen-
eracy and allows to fit the model parameters to the observed neutrino mass
differences. We determine the values of the additional Yukawa couplings by
requiring the correct prediction of the mass differences and mixings in the
neutrino sector. We also discuss the ambiguities of the model parameters.
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1. Lagrangian of the model

The Lagrangian of the Grimus–Neufeld model [1] adds to the Standard
Model (SM) a single gauge singlet fermion NR and a second Higgs doublet.
The scalar sector is a general Two-Higgs-Doublet Model (2HDM), as de-
scribed in [2]. Even though this description might be enough, we want to
explicitly write the parts as, this way, we also define our parameters.

For the bare Lagrangian, we start with the gauge sector of the SM, which
is given by the gauge group GSM = U(1)Y ⊗SU(2)L⊗SU(3)color. The gauge
field strength tensors form the Yang–Mills Lagrangian

LG = −1
4BµνB

µν − 1
4W

a
µνW

aµν − 1
4G

b
µνG

bµν . (1)

The fermion-gauge sector uses the covariant derivative with the fermions
being in the fundamental representation of the gauge group GSM

LG-F =
∑
ψ

ψ̄ iγµDµ ψ . (2)
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The Higgs potential V (φa) is written in the Higgs basis [2], where only the
first doublet develops the vacuum expectation value (vev) v. The Higgs
doublets are also in the fundamental representation of the gauge group,
giving them the covariant derivative

Dµφa = ∂µφa + i
2gU(1)Bµφa + i

2gSU(2)W
j
µσ

jφa , (3)

and the Lagrangian

LG-H = (Dµφa)
†(Dµφa)− V (φa) . (4)

In the fermion–Higgs sector, we have the Yukawa couplings, which are de-
fined with the Higgs doublets in the Higgs basis

LF-H = −¯̀0
Lj φa

(
Y

(a)
E

)
jk
e0Rk − ¯̀0

Lj φ̃a

(
Y

(a)
N

)
j
N0

R + h.c. (5)

The Yukawa couplings of the quarks belong to the model, but since we are
only interested in the neutrinos, we omit them from our discussion. The last
sector is the Majorana mass term for the singlet fermion N0

R

LMaj = 1
2MRN

0
R
>
C−1N0

R + h.c. , (6)

where C is the “charge conjugation matrix” [3]. The kinetic term is already
included in the fermion-gauge Lagrangian Eq. (2) with a simple covariant
derivative DµN

0
R = ∂µN

0
R.

2. Tree-level mass eigenstates

Inserting the vacuum expectation value v into the Yukawa Lagrangian
Eq. (5), we get the mass matrices for the charged fermions

Me = v√
2

(
Y

(1)
E

)
, Mu = v√

2

(
Y

(1)
U

)
, Md = v√

2

(
Y

(1)
D

)
. (7)

Diagonalization of these mass matrices

UeLMeU
†
eR = diag{me,mµ,mτ} (8)

defines the mass eigenstates of the charged fermions

eLk = (UeL)kne
0
Ln and eRk = (UeR)kne

0
Rn . (9)

Applying the same rotation to the neutral leptons defines their flavor states

{νe, νµ, ντ}k = νLk = (UeL)knν
0
Ln , (10)
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which are used for the definition of the neutrino mixing matrix. The Yukawa
coupling with the neutral fermions gives the so-called Dirac mass term

MD = v√
2

(
Y

(1)
N

)
(11)

that describes the tree-level mixing of the neutral leptons with the gauge
singlet. In our case, it is a 3× 1 matrix. Together with the Majorana mass
term, it forms a symmetric mass matrix

Mν =

(
ML M>D
MD MR

)
, with

ML = 03×3 ,

MD = v√
2
Y

(1)
N ,

(12)

which is obviously rank 2 and hence gives only two non-zero masses. We
can diagonalize Mν by the unitary matrix U(ν) . Writing the diagonalization
in a linear form (the “seesaw relation”)

U(ν)
∗Mν = diag(m1,m2,m3,m4)U(ν) =: m̂U(ν) with m1 = m2 = 0 , (13)

we can determine the general form of U(ν) as

U(ν) =

 u1e u1µ u1τ 0
u2e u2µ u2τ 0
cu3e cu3µ cu3τ is
isu3e isu3µ isu3τ c

 , where
c2 = m4

m4+m3

s2 = m3
m4+m3

. (14)

The entries uαk can be understood as the tree-level 3 × 3 neutrino mixing
matrix. Ignoring the heavy state, uαk tells us how the three light mass
eigenstates mix to form the interaction eigenstates νLk.

3. Tree-level Yukawa couplings

Looking at the linear seesaw relation, Eq. (13), from the perspective of
the involved Yukawa couplings, we can write the decoupling of the tree-level
degenerate neutrinos ζM1,2 from the first Higgs doublet as

u∗1k

(
Y

(1)
N

)
k

= u∗2k

(
Y

(1)
N

)
k

= 0 , (15)

where
∑

k is implied. Knowing that the radiative mass generation will lift
the degeneracy, we distinguish the two neutrinos by their coupling to the
second Higgs doublet. We require that ζM1 has no coupling to the second
Higgs doublet, and we parametrize the coupling of ζM2 by the parameter d

u∗1k

(
Y

(2)
N

)
k

= 0 and u∗2k

(
Y

(2)
N

)
k

=: d 6= 0 . (16)

Since uαk is a unitary 3× 3 matrix, its rows act as a basis of 3 orthonormal
vectors. We can use these vectors to parametrize the Yukawa couplings(

Y
(1)
N

)
k

=
√
2mD
v u3k ,

(
Y

(2)
N

)
k

:= d u2k + d′u3k . (17)
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4. The Grimus–Lavoura procedure

Grimus and Lavoura [4] made a series of approximations that simplified
the needed one-loop corrections and described the essential feature of the
model in a gauge invariant way. The first step was to consider only the
“light” neutrino states ζM1,2,3 and to use only the interaction eigenstate basis.
On this basis, the zero block of the neutrino mass matrix Mν , Eq. (12), is
explicit. Reducing the mass matrix to an effective 3 × 3 mass matrix Mν

gives the tree-level matrix

Mtree
ν = −M>D M−1R MD , (18)

and the one-loop matrix

M1-loop
ν =Mtree

ν + δMν , (19)

with

δMν = δML − δM>D M−1R MD −M>D M−1R δMD

+M>D M−1R δMRM
−1
R MD , (20)

where the counter-terms come only from the parameters appearing inMtree
ν .

δML has no counter-terms, as it is absent at tree-level, but loops generate
a finite contribution. Following the discussion in [4], we note that the cor-
rections coming from δMD are suppressed by the squares of normal Yukawa
couplings compared to the contribution arising in δML. And since we do
not aim at measuring the mass of the heavy neutrino, m4 ∼ MR, we can
redefine its bare mass to adjust the counterterm δMR to any arbitrary value,
hence its contribution is irrelevant.

The second step in the Grimus–Lavoura procedure consists of calculating
the correction δML, where the loop integrals, shown in Fig. 1, are evaluated
at vanishing external momentum. From the Lorentz structure of the loop
corrections, we see that only the Z boson and the neutral Higgs bosons
contribute to (δML)αβ . That allows to write the effective mass matrix as(

M1-loop
ν

)
jk

= u2ju2kA+ (u2ju3k + u3ju2k)B + u3ju3kC , (21)

which is only of rank 2, hence producing only a single vanishing neutrino
mass m̃1 = 0.

The coefficients are given by

A = d2f1 , B = d′df1 + idmDv f2 , C = d′
2
f1 + 2id′mDv f2 +

m2
D
v2
f3 ,
(22)
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Σ
[2]
V (p2) =

.

.
✲
p

✲
p

✲
p+ k

✛k

α β

2 1

Σ
[2]
S (p2) =

.

.
✲
p

✲
p

✲
p+ k

✛k

α β

2 1

Fig. 1. Two Feynman diagrams contributing to the effective mass matrix (δML)αβ
at one loop.

with the functions fi depending only on the Higgs sector

f1 = 1
32π2

[
s212m

2
h

m4
ln

m2
4

m2
h

+
c212m

2
H

m4
ln

m2
4

m2
H
− m2

A
m4

ln
m2

4

m2
A

]
, (23)

f2 =
√
2s12c12
32π2

[
m2
h

m4
ln

m2
4

m2
h
− m2

H
m4

ln
m2

4

m2
H

]
, (24)

f3 = 1
16π2

[
3m2

Z
m4

ln
m2

4

m2
Z
− c212m

2
h

m4
ln

m2
4

m2
h
− s212m

2
H

m4
ln

m2
4

m2
H

]
− v2

m4
. (25)

5. Using neutrino masses as input

Since the mass of the lightest neutrino vanishes in this model, we can
determine the “experimentally measured” light neutrino masses from the
measured mass squared differences, that are determined in the neutrino os-
cillation experiments. We use the summary [5].

On the theory side, we get the masses m̃k from the reduced mass matrix,
Eq. (21). Since we already know m̃1 = 0, we can reduce the matrix to an
effective size of 2× 2

R∗ ×
(
A B
B C

)
=

(
m̃2 0
0 m̃3

)
×R , (26)

where the mixing matrix

R = ei
α
2

(
c̃ s̃
−s̃∗ c̃∗

)
, with c̃ = e

i
2
(γ+δ) cosβ

s̃ = e
i
2
(γ−δ) sinβ

(27)

describes the mixing between neutrino fields ζ2 and ζ3. The angles and
phases of R are fully determined

tan2 β =
|A|2 + |B|2 − m̃2

2

m̃2
3 − |A|2 − |B|2

, eiδ = −(A∗B +B∗C) tanβ

|A|2 + |B|2 − m̃2
2

= . . . , (28)

e2iα =
m̃2 m̃3

AC −B2
, eiγ =

eiα

m̃3
(Ce−iδ −B tanβ) = . . . , (29)

where “. . .” indicate different possible analytic expressions.
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But we can determine the masses m̃2 and m̃3 from A, B, and C alone
by using the identities for the trace

m̃2
2 + m̃2

3 = Tr

[
R

(
A B
B C

)†(
A B
B C

)
R†
]

= |A|2 + 2|B|2 + |C|2 (30)

and the determinant

m̃2 m̃3 = det[R∗] det

[
A B
B C

]
det
[
R†
]

= e−2iα
[
AC −B2

]
. (31)

Due to the specific structure of Eq. (22), the determinant is very simple

m̃2 m̃3 =
∣∣AC −B2

∣∣ = d2
m2
D
v2

∣∣f1f3 + f22
∣∣ (32)

and allows the direct determination of d,

d2 =
v2

m2
D

m̃2 m̃3∣∣f1f3 + f22
∣∣ , (33)

in terms of the measured masses

m̃2 =
√

∆m2
sol and m̃3 =

√
∆m2

atm . (34)

Using these masses as input, Eq. (30) can be seen as a fourth-order equation
for |d′|, where φ′ = arg[d′]

0 = −m̃2
2 − m̃2

3 + |A|2 + 2|B|2 + |C|2 (35)

= a4
∣∣d′∣∣4 + a3

∣∣d′∣∣3 + a2
∣∣d′∣∣2 + a1

∣∣d′∣∣+ a0 ,

with

a0 = d4f21 + 2d2
m2
D
v2
f22 +

m4
D
v4
f23 − m̃2

2 − m̃2
3 , (36)

a1 = 4 sinφ′mDv f2

[
d2f1 −

m2
D
v2
f3

]
, (37)

a2 = 2
[
d2f21 +

(
2f22 + cos 2φ′f1f3

) m2
D
v2

]
, (38)

a3 = 4 sinφ′mDv f1f2 , (39)

a4 = f21 , (40)

giving the dependence∣∣d′∣∣ =
∣∣d′∣∣ [v2;mh,mH ,mA, s12; m̃2, m̃3, m̃4;m

2
D;φ′

]
, (41)

which is displayed graphically by the scatter plot in Fig. 2.
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d φ′[deg] = arg[d′]

Fig. 2. (Color online) Scatter plot of the parameters d, |d′|, and φ′. m̃2 = 8.7meV
and m̃3 = 49.6meV are calculated from Eq. (34) with the ∆m2 taken from [5].
For m̃4, we assume the values {103, 106, 109, 1012}GeV and m2

D = 0.81 m̃3m̃4. The
parameters of the Higgs sector are taken from [6].

6. Using the PMNS matrix as input

The mixing matrix R, Eq. (27), transforms the two light neutrino states
ζ2,3 into the mass eigenstates. Therefore, the mixing matrix uαk from
Eq. (14) is not the full PMNS matrix that is defined by the coupling of
W+ to the charged leptons and the neutrino mass eigenstates. We can
relate uαk with the PMNS matrix by

u1k = UPMNS
1k ,

(
u2k
u3k

)
= R† ·

(
UPMNS

2k

UPMNS

3k

)
, (42)

giving the final definition of the Yukawa couplings in terms of the PMNS
matrix elements(

Y
(1)
N

)
k

=
√
2mD
v e−i

α
2
(
s̃∗UPMNS

2k + c̃UPMNS
3k

)
, (43)(

Y
(2)
N

)
k

= e−i
α
2
[(
c̃∗d+ s̃∗d′

)
UPMNS
2k −

(
s̃d− c̃d′

)
UPMNS
3k

]
. (44)

7. Summary

For the masses alone, the Grimus–Lavoura procedure [4] gives a very
simple and yet also very accurate description of the physical neutrino sector.
Our study, illustrated in Fig. 3, suggests that the Grimus–Lavoura procedure
does not always give a perfect match to the physical neutrino sector. The
subdominant contributions from the charged loops might contribute to the
dependencies derived from the neutrino mixing, as discussed in [4] as well.
A logical next step is the inclusion of the full renormalization of the model.
The initial phase of the study is reported in [7].
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Fig. 3. (Color online) The values of the |d′| and the PMNS mixing angle θ23 in
dependence of the phase φ′. The left plot represents a single solution of the quartic
equation for |d′|, Eq. (35), that is allowed for the whole range of phases. The right
plots shows the case when Eq. (35) has more than one real positive solution, but
not for the whole range of phases: 205◦ ≤ φ′ ≤ 335◦.

We have implemented checks, where our model gives a good self-consis-
tent description of the physical neutrino sector. In these regions of the pa-
rameter space, the predictions of the Yukawa couplings, defined in Eqs. (43)
and (44), should be reliable.

The authors thank the Lithuanian Academy of Sciences for the support
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