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We present the complex mass renormalization scheme for mixed Majo-
rana fermions using the Weyl spinor notation. Showing the expressions for
field and mass renormalization constants, we discuss the differences to the
on-shell renormalization scheme. Working in a seesaw extended two-Higgs
doublet model, we apply the complex mass scheme for neutrino masses and
mixings.
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1. Introduction

The most commonly used renormalization scheme is the on-shell scheme
(OS). However, it is shown that for unstable particles this scheme leads to
gauge non-invariant definitions of masses [1]. In the seesaw mechanism (for
a review, see [2]), the heaviest neutrino is by no means a stable particle.
Original assumptions of the seesaw mechanism put the heaviest neutrino
beyond the reach of any possible experiment. This partially justifies the use
of OS, since we are looking only at the light neutrinos. However, for a more
precise study of the model, the assumptions on the unmeasured parameters
should be relaxed and this justification is lost.

The extension of the OS for unstable particles is the complex mass
scheme (CMS) [3–5]. It is the analytical continuation of the propagator
to the complex domain. In that way, the information about the decay width
of the particle is included in the renormalized mass as the imaginary part of
self energies. One can formally prove gauge invariance of the definition of
mass at all loop levels [1] with the help of Nielsen identities [6].
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In Section 2, we present the main definitions used to define the renor-
malization scheme. In Section 3, we outline the derivation of mass and field
renormalization constants for the Majorana fermions in the complex mass
scheme and discuss the implications. Finally, in Section 4, we present the
restrictions on the specific renormalization constants and one-loop Green’s
functions in the two-Higgs doublet model (2HDM) with one seesaw neutrino.

2. Definitions

We use the Weyl spinor notation in the chiral representation as in [7, 8].
Let us say we have left-handed Weyl spinors ν0i with bare Majorana masses
m0i. We can always fix the phase of ν0i so that the mass parameter m0i is
real. Then we can write the multiplicative renormalization constants as:

ν0i = Z
1
2
ijνj , ν†0i = Z

1
2
†

ij ν
†
j , m0i = miZmi ,

Zmi = 1 + δmi , Z
1
2
ij = 1ij + 1

2δij . (1)

However, as we will see later, these multiplicative constants are not enough
to absorb the imaginary parts coming from the loop functions for unstable
particles. So we increase the degrees of freedom for the field renormalization
part:

ν0i = Z
1
2
ijνj , ν†0i = Z̄

1
2
ij ν̄j ⇒

(
Z

1
2
ijνj

)†
= Z̄

1
2
ij ν̄j . (2)

This is equivalent to dropping the pseudohermicity requirement as suggested
in [3].

The renormalized Green functions are

〈φ1 . . . φn〉[loop]
1PI =

δnΓ̂ [loop]

δφ1 . . . δφn
≡ Γ̂ [loop]

φ1...φn
≡ Γ [loop]

φ1...φn
+ δΓ

[loop]
φ1...φn

, (3)

where Γ̂ is the renormalized effective action and δΓ stands for counterterms.
Then the tree-level Green’s functions read as:

Γ̂ [0]
νiνi = −mi , Γ̂

[0]
ν̄iν̄i = −mi , Γ̂

[0]
ν̄iνi = pσ̄ , Γ̂

[0]
νiν̄i = pσ , (4)

where σ and σ̄ connect spinors to four vectors as defined in [7, 8]. Due to
Lorentz invariance, we can factor out the scalar parts of Green’s functions as:

Γ̂νiνi = miΣ̂νiνi , Γ̂ν̄iν̄i = miΣ̂ν̄iν̄i ,

Γ̂νiν̄j = pσΣ̂νiν̄j , Γ̂ν̄iνj = pσ̄Σ̂ν̄iνj . (5)
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Then we can express the counterterms using Eqs. (1)–(5) and write the loop
functions as:

Σ̂νiνi = −δmi − δii +Σνiνi , Σ̂ν̄iν̄i = −δmi − δ̄ii +Σν̄iν̄i , (6)
Σ̂ν̄iνj = 1

2

(
δij + δ̄ji

)
+Σν̄iνj , Σ̂νiν̄j = 1

2

(
δ̄ij + δji

)
+Σνiν̄j . (7)

3. From on shell to complex mass shell

With these definitions, the resummed propagators are:

〈ν̄iνi〉 = iσ̄p
[
p2
(

1 + Σ̂νiν̄i

)
−m2

i

(
1− Σ̂νiνi − Σ̂ν̄iν̄i − Σ̂ν̄iνi

)]−1
, (8)

〈νiνi〉 = imi

[
p2
(

1 + Σ̂ν̄iν̄i + Σ̂νiν̄i + Σ̂ν̄iνi

)
−m2

i

(
1− Σ̂νiνi

)]−1
, (9)

together with analogous two propagators that can be obtained from Eq. (8)
and Eq. (9) by changing νi ↔ ν̄i. Abbreviating Di ≡ p2 −m2

i , the mixed
two-point correlation functions (i 6= j) are:

〈νiνj〉 = −i(DiDj)
−1
(
mimjΓ̂νiνj + p2

[
mjΣ̂ν̄iνj + Γ̂ν̄iν̄j +miΣ̂νiν̄j

])
, (10)

〈ν̄iνj〉 = −iσ̄p(DiDj)
−1
(
mjΓ̂νiνj +mimjΣ̂ν̄iνj +miΓ̂ν̄iν̄j + p2Σ̂νiν̄j

)
, (11)

and νi ↔ ν̄i. The OS renormalization condition for a mass counterterm
can be derived by requiring that the real part of the pole of the diagonal
propagator coincides with the renormalized mass. The requirement that the
mixed propagators vanish and that the residue of the diagonal propagator
is equal to one gives the conditions for the wave function renormalization.
Generalization from the OS to the CMS is obtained by just dropping the
reality requirement and evaluating self energy functions at the exact complex
pole of the propagator. Hence in the CMS, these conditions are:(

Σ̂νiνi + Σ̂ν̄iν̄i + Σ̂νiν̄i + Σ̂ν̄iνi

) ∣∣∣
p2=m2

i

= 0 , (12)

Σ̂ν̄iνi = −m2
i

∂

∂p2

(
Σ̂νiνi + Σ̂ν̄iν̄i + Σ̂νiν̄i + Σ̂ν̄iνi

) ∣∣∣
p2=m2

i

, (13)

Σ̂ν̄iνi

∣∣∣
p2=m2

i

= Σ̂ν̄iνi

∣∣∣
p2=m2

i

= −Σ̂ν̄iν̄i
∣∣∣
p2=m2

i

= −Σ̂νiνi
∣∣∣
p2=m2

i

, (14)(
Γ̂νiνj +mjΣ̂νiν̄j

) ∣∣∣
p2=m2

i

= 0 ,
(
Γ̂ν̄iν̄j +mjΣ̂ν̄iνj

) ∣∣∣
p2=m2

i

= 0 . (15)

The condition of Eq. (12) comes from the requirement of the position of the
pole for Eq. (8) and Eq. (9); the conditions of Eq. (13) and Eq. (14) come
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from the requirement that the residue of Eq. (8) and Eq. (9) is one and
the conditions of Eq. (15) come from the requirement that the expressions
in Eq. (10) and Eq. (11) vanish at p2 = m2

i and p2 = m2
j . Inserting the

expressions from Eq. (6) and Eq. (7) into these conditions leads to:

δmi =
1

2
(Σνiνi +Σν̄iν̄i +Σνiν̄i +Σν̄iνi)

∣∣∣
p2=m2

i

, (16)

1

2

(
δ̄ii + δii

)
= −Σν̄iνi −m2

i

∂

∂p2
(Σνiνi +Σν̄iν̄i +Σνiν̄i +Σν̄iνi)

∣∣∣
p2=m2

i

, (17)

δ̄ii − δii = (Σνiνi −Σν̄iν̄i)
∣∣∣
p2=m2

i

, (18)

δ̄ij =
2

m2
i −m2

j

(
mjΓνiνj +m2

jΣνiν̄j +miΓν̄iν̄j +mimjΣν̄iνj
) ∣∣∣
p2=m2

j

, (19)

δij =
2

m2
i −m2

j

(
miΓνiνj +mimjΣνiν̄j +mjΓν̄iν̄j +m2

jΣν̄iνj
) ∣∣∣
p2=m2

j

. (20)

Equations (12)–(20) are consistent with the expressions in [3]. If we used
the multiplicative constants only in the form of Eq. (1), without the field
renormalization constants shown in Eq. (2), we could not absorb the imag-
inary parts from the loop functions. This can be easily seen from Eq. (17):
using only constans from Eq. (1) would lead to an always real combination of
constants δ†ii+δii in the LHS of Eq. (17) instead of δ̄ii+δii which, in general,
can be complex. On the other side, we see that the mass counterterm in
Eq. (16), generalizes straightforwardly to the complex mass scheme by just
dropping this reality condition. Actually, this would not be the case if we
did not absorb the phase of the bare mass parameters in the Weyl spinors.
Then we would have needed to introduce some new m̄i and δ̄mi in analogy to
δ̄i and ν̄i. However, there is no need for this additional complication, since
we can always fix the phase of Majorana fermions.

Another interesting and somewhat odd feature of this scheme is that
the renormalized field in the Lagrangian is not related to the corresponding
antifield by Hermitian conjugation, whereas the bare fields are. The relation
is altered by the wave function renormalization constants from Eq. (2):(

Z
1
2
ijνj

)†
= Z̄

1
2
ij ν̄j ⇒ ν†i = ν̄i + 1

2

(
δ̄ij − δ†ij

)
ν̄j +O

(
δ2
)
. (21)

From Eq. (19) and Eq. (20), we can see that if νj is stable, we have δ̄ij = δ†ij .
This means that the relation of Eq. (21) reduces to ν†i = ν̄i if every νj is
stable and we recover the usual on-shell conditions. However, if at least
one particle entering Eq. (21) is unstable, we get ν̄i 6= ν†i for all particles
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that mix, even if the particle under consideration is stable. This is not
inconsistent: all particles mix at the Lagrangian level. To see how this is
consistent, we should look at Green’s functions instead. Let us assume that
the particle νi is stable, then at one-loop level:

δ2

δνiδν̄i
Γ̂ =

ˆ

j

δν†j
δν̄i

δ2

δνiδν
†
j

Γ̂ ,

δν†j
δν̄i

= 1ji +
1

2

(
δ̄ji − δ†ji

)
= 1ij ⇒ Γ̂νiν̄i = Γ̂

νiν
†
i
. (22)

If νi is unstable, similar manipulations give:

Γ̂
[≥1]
νiν̄i =

(
1 +

1

2

(
δ̄ii − δ†ii

))
Γ̂

[0]

νiν
†
i

+ Γ̂
[1]

νiν
†
i

. (23)

Here, we also used the assumption that the basis is chosen in such a way
that there are no mixed terms at tree level. As an example, let us assume
that all the couplings that go into the expression for δ̄ii − δ†ii are real. Then
δ̄ii = δii and we can rewrite Eq. (23) as:

Γ̂
[≥1]
νiν̄i = ei Im δiiΓ̂

[0]

νiν
†
i

+ Γ̂
[1]

νiν
†
i

. (24)

We see that the instability of νi is seen as the additional phase in its two-
point Green’s function, while a Green’s function of a stable particle stays
the same.

4. Renormalization constants for 4 neutrinos in the 2HDM

The Yukawa sector for neutrinos in the 2HDM in the Higgs basis includes
four neutrinos, two neutral scalars h′, H ′, one neutral pseudoscalar A′, a
charged scalar H± and Goldstone bosons. In general, all neutral scalars
mix, giving the mass eigenstates h,H, and A. The seesaw mixing is defined
between the third and the fourth neutrino (s2 = m03

m04+m03
, c2 = m04

m04+m03
).

The full Yukawa Lagrangian for this model can be found in [9]. The Yukawa
part that includes only the neutral scalars can be written as:

Lν = −1

2
m03 ν03ν03 −

1

2
m04 ν04ν04

− 1√
2

[
y
(
h′+iχ0

)
− d′

(
H ′+iA′

)] (
csν03ν03 + i

(
c2−s2

)
ν03ν04 + csν04ν04

)
− 1√

2
d
(
H ′+iA′

)
ν02 (−isν03 + cν04) + h.c. (25)
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y is given by the neutrino masses and the vacuum expectation value, hence
the only free parameters in this part of the Lagrangian are

m03,m04, d ∈ R and d′ ∈ C . (26)

There are no bare masses for ν2 and ν1, hence no mass counterterms and no
counterterms for their mixing:

δm1 = δm2 = δ12 = δ̄12 = δ21 = δ̄21 = 0 . (27)

ν1, ν2 and ν3 are stable at one-loop level, so the counterterms are the same
as we would have in the OS scheme:

ν†j = ν̄j , δm3 ∈ R , δ†jj = δ̄jj , δ†ij = δ̄ij , i = 1, 2, 3, 4 ; j = 1, 2, 3 .

(28)
For an unstable ν4, we have:

δm4 , δi4, δ̄i4, δ44, δ̄44 ∈ C , ν†4 =
(

1− 1
2 δ̄44 + 1

2δ
†
44

)
ν̄4 , i = 1, 2, 3 . (29)

Since we chose a basis in such a way that ν1 does not interact with any
neutral scalar, it stays massless after loop corrections as well. Since the
counterterms of Eq. (27) are zero, there should be no mixing between ν1

and ν2 after a loop correction, so:

Γν1ν1 = Γν1ν2 = 0 . (30)

Note that δ13 and δ14 are not equal to zero and they are used to absorb
the mixing coming from Γν1ν3 and Γν1ν4 , which are not zero due to a loop
with a charged fermion and a charged scalar.

Finally, there is no counterterm for the mass term for ν2, which means
that the one-loop mass term

m2 = −Γν2ν2 (0) (31)

is finite and gauge invariant.

The authors thank the Lithuanian Academy of Sciences for the support
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