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We report progress on a new approach to calculate top-pair production
cross sections at NNLO. This consists in combining the slicing method with
the soft collinear effective theory. The necessary matrix elements already
exist in the literature except for the soft function at NNLO. We describe a
strategy to evaluate this function numerically, and make a robust validation
against the renormalisation group and our analytic results.
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1. Introduction

The top-pair (tt̄ ) production is relevant for searches of a new physics
at the LHC [1]. With the experiment providing highly precise data, the
community is motivated to strengthen the current theoretical understanding
of this process. Some important aspects that are currently being studied
are the top mass definition, its decay modelling and the perturbative QCD
corrections. Here, we focus on the latter. At the moment, only one group
has calculated the full total and differential QCD corrections at NNLO [2–4]
and other groups have reported partial results [5–7] that agree at the level
of the total cross section. In addition, there are various approximate results
at this order, see Refs. [8–13].

In these proceedings, we report progress on a new approach to evaluate
a wide-range of differential cross sections at NNLO. We have the two-fold
motivation of providing a full independent test of such cross sections and of
developing an approach that can be applied to other processes at high orders,
e.g. gg → H at N3LO. The approach brings together various strategies tested
in the literature:
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1. Firstly, we use the key observation of the slicing method [7, 14] that a
cross section σNNLO

tt̄ integrated over the transverse momentum of the
tt̄ pair, qT, can be written as

σNNLO
tt̄ =

∫

qT<qTcut

dqT
dσNNLO

tt̄

dqT
+

∫

qT>qTcut

dqT

dσNLO+jet
tt̄

dqT
. (1)

The second term on the right-hand side is well-known, see for example
[15, 16].

2. Secondly, to calculate the small-qT region (qT < qTcut), we adopt Soft
Collinear Effective Theory (SCET), which has been applied to the
same process at NLO [17]. All the relevant SCET operators except
the soft function are know up to NNLO.

3. Finally, the graphs contributing to the soft function at NNLO have
a common structure that can be algorithmically evaluated using a
numerical approach.

In the following sections, we discuss points 2 and 3 from this list and in
Section 4, we validate our algorithm by cross-checking against the contribu-
tions involving fermions: a part of the NNLO soft function that, by itself,
can be compared against the SCET renormalisation group and that we have
been able to evaluate analytically.

2. SCET for the small-qT region

Let us denote by p1 and p2 the momenta of the incoming partons that
interact to produce a pair of top quarks with momenta pt and pt̄, plus
additional partonic radiation X, i.e. we are interested in the process

q(p1) + q̄(q2)→ t(pt) + t̄(pt̄) +X . (2)

The SCET framework ascertains [17], first, that when the momentum of the
top pair q = pt + pt̄ satisfies

ΛQCD � q2
T � q2,m2

t , (p1 + p2)2, (p1 − pt)2 −m2
t , (p1 − pt̄)2 −m2

t , (3)

the states X, which are not power suppressed1 have the momentum
(k±, k∓, kµT) that is either hard k ∼ (1, 1, 1), soft k ∼ (λ, λ, λ) or collinear
k ∼ (λ2, 1, λ), where λ = Λ/qT and, second, that the cross section can be
written as the convolution of hard (H īi), soft (S īi) and beam (Bi) functions

1 Λ2/q2T or Λ2/q2.
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that, respectively, describe the physics of these regions. Schematically, this
can be written as

dσtt̄
dq2

T dy dq2 d cos θ
=
∑

X

∑

i=q,q̄,g

Bi(ξ1, xT, µ)⊗Bī(ξ2, xT, µ)

⊗Tr
[
H īi

(
q2,m, vt, µ

)
⊗ S īi(xT, vt, µ)

]
, (4)

where µ is the factorisation scale, the sum over i runs over the possible
production channels, and the convolution should be understood over the
longitudinal factions ξi and the transverse coordinates x⊥. The kinematical
variables y and vt are defined in the tt̄ rest frame, y is the rapidity of tt̄ pair
and

pt = mt

(
1− β2

)−1
(1, βvt) , vt = β (cos θ, sin θ n̂T) , (5)

where β =
√

1− 4m2
t /q

2 is the velocity of pt. We refer the reader to
Refs. [17, 18] for a detailed presentation of this expression.

In SCET, the soft, hard and beam functions have perturbative expan-
sions, each of which is potentially simpler than the expression for the com-
plete cross section. In the case of Eq. (4), the hard function and the process-
independent beam functions [18, 19] are known up to NNLO but the soft
function is only known up to NLO [17].

3. Integration strategy of the soft function at NNLO

We work in the momentum space, S īi(q′T, vt, µ), where the soft function
amounts to a product of Wilson lines with soft emissions having a fixed total
transfer momenta, q′T. Up to NNLO, the integration of the azimuthal angle
of xT commutes to the right of the beam and hard functions, and acts only
on the soft function [17]. Remarkably, at each order in αs, such azimuthal
integration can be used to factor away the q′T dependence2. We illustrate
all this in Fig. 1.

Before the soft function can be evaluated, it is necessary to note that
its individual contributions suffer from the so-called rapidity divergences
associated to states that scale as (λ±1, λ∓1, 1). Non-trivially, the rapidity
divergences at NNLO can be regularised by means of the analytic regulator
[17, 20], i.e. by changing the integration measure as

d4−2εkiδ
+
(
k2
i

)
→ d4−2εkiδ

+
(
k2
i

) (
k+
i

)−α
, (6)

where α is a regulator analogous to ε in the dimensional regularisation. Upon
integration, the different graphs that contribute to the soft function can be

2 Hence, the integrations in the momentum and in the coordinates spaces can be easily
related to each other.
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Fig. 1: Soft function in momentum space. The sum over Xs runs over all
graphs in which gluons couple in the Eikonal approximation to the hard
subprocess but interactions between these ( inside the blob) are exact. The
sum and product over ki runs over the cut (on-shell) emissions. The depen-
dence on fa(q

0
T ) has been factored out of the integration. The bottom rows

illustrate contributions at NLO and NNLO.

Before we proceed further, we make a parenthesis to point out that indi-
vidual contributions to the soft function su↵ers from the so called rapidity
divergences associated to the momentum modes (�±1,�⌥1, 1). Non-trivially,
like it was observed at NLO [15], these divergences can be regularised by
means of the analytic regulator [21] that changes the integration measure
of cut partons as

d4�2✏ki�
+(k2

i ) ! d4�2✏ki�
+(k2

i )(k
+
i )�↵. (7)

where ↵ is an small complex number. After this, the integration of parts
of the soft function can be expanded as in dimension regularisation giving
rises to contribution / 1/(↵m✏n) , with m � 2 and n � 3.

Analytic integration at NNLO is complicated due to delta function that
fixes the kiT of the on-shell emissions, see Fig. 1. At this order, there
are double cut (double real) as well as single cut (real virtual) contribu-
tions. The virtual loop can be integrated out using the results of Ref. [14].
Due to this, we focus on the double cut contributions which as the higher
dimensional integrals left. We designed, and automated, an algorithm to
numerically integrate each graph at this order. Non-trivially, this is possible

Fig. 1. The azimuthally averaged soft function in the momentum space. The sum
over Xs runs over all graphs that couple to the hard sub-process in the eikonal
approximation, but with exact QCD interactions inside the hatched blob. The
sum and product over ki runs over the cut (on-shell) emissions. As explained in
the main text, the dependence on q′T has been factored out of the integration and
is encoded by simple functions denoted by fa(q′T). The bottom rows illustrate
particular graphs that contribute, respectively, at NLO and at NNLO.

expanded both in α and ε. The α poles should be cancelled order-by-order
in αs and the ε poles should be cancelled by the SCET renormalisation
procedure, see below.

The graphs that appear in the evaluation of the soft function are not
standard due to the presence of the delta function that constraints the kiT
of the on-shell emissions, see Fig. 1. At NNLO, the soft function receives con-
tributions from double-cut (double-real) and single-cut (mixed real-virtual)
graphs. The virtual loop in the latter can be integrated out using the results
of Ref. [21]. Due to this, below, we will focus on the double-cut graphs.

To integrate all the double-cut graphs, we have designed and automated
an algorithm to numerically integrate these. Non-trivially, this is possible
because double-cut graphs share a common structure that can be exploited.
The backbones of this algorithm are:
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1. Identify all the divergences of every contribution G to the soft function
and separate its integrand as

G =

∫
ddk1ddk2

δ+(k1)δ+(k2)(
k+

1 k
+
2

)α δ
(
1− |k1⊥ + k2⊥|2

)
IG ×WG , (7)

where the defining property of the weight part WG is that it has at
most integrable singularities. In contrast, the infrared part IG has
divergences that, broadly speaking, gives rise to α and ε poles.

2. Map the integration variables {ki} → {xij} to a minimal number of
domains j, each of which is a unit hypercube (xij ∈ [0, 1]) with singu-
larities located only at zero.

3. Implement sector decomposition to disentangle and factorise the α
and ε poles of each graph. The entire sector decomposition procedure
depends only on the details of IG, and WG is treated as a weight
function. This is crucial for efficiency reasons. After this point, α
and ε expansion renders expressions of the form of

G =
∑

j

∑

r=−2,s=−3

1

αrεs

∫

[0,1]n

dn~x Frsj (~x, θ, β) , (8)

where now each integral on the right-hand side is finite.

4. In general, such integrals are intricate but we have found that these
are suitable for a numerical evaluation using the CUBA library [22].

4. Validation of the integration strategy

In this section, we will describe a series of tests of our numerical inte-
gration. Let us start by noting that the only graphs that are proportional
to the number of light quark flavours, nf , are those that involve emission
of a fermion pair. Due to this, the cancellation of poles should occur inde-
pendently for this set of graphs. To check this, let us denote by Gfer

ij the
graph in the third line of Fig. 1. Only the contributions with (i, j) set to
{(1, t), (2, t), (1, t̄ ), (2, t̄ )(t, t̄ ), (t, t), (t̄, t̄ )} are non-vanishing.

Both numerically and analytically, we have been able to compute all
the poles of these graphs. Although, at intermediate steps, most integrals
exhibit α poles, the only graphs that have these poles are

Gfer
1t = nfT 1 · T t

( c
α

+ . . .
)
, Gfer

2t = −nfT 2 · T t

( c
α

+ . . .
)
,

Gfer
1t̄ = nfT 1 · T t̄

( c
α

+ . . .
)
, Gfer

2t̄ = −nfT 2 · T t̄

( c
α

+ . . .
)
. (9)
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By using colour conservation, one can show that the poles cancel when these
graphs are added together. Indeed, this is what we find after combining all
graphs

c(analytically) = − 8

3αε
− 8(3γE + 5− 3 log(2))

9α
,

c(numerically) = −2.66

αε
− 4.13

α
+O

(
10−3

)
. (10)

After the cancellation of the α poles, the ε poles of the bare soft function
must be cancelled by the SCET renormalisation procedure [23]

S(µ) = Z†s(µ, ε)Sbare(ε)Zs(µ, ε) . (11)

Again, we have singled out all contributions proportional to nfα
2
s and con-

firmed that the Zs(µ, ε) operators remove all the ε poles of graphs involving
the radiation of a fermion pair.

Within our numerical approach, the graphs involving fermions are the
most complicated. In spite of this, by means of ordinary differential equa-
tions, we have been able to solve analytically such contributions up to the
order of ε0α0. Figure 2 shows the agreement between our numerical and an-
alytic calculations for a particular combination of graphs. Analogous plots
for other graphs can be found in [24]. This agreement holds with absolute
accuracy of the order of 10−3, which is the preliminary setting we used for
the validation stage.

Fig. 2. The numerical and the analytic calculation of the kinematical part of Gfer
tt̄ −

Gfer
tt /2 − Gfer

t̄t̄ . Up to a global power of q′T, the soft function depends only on the
velocity β and the polar angle, θ, of pt.
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5. Conclusions

Top-pair cross sections at NNLO can be evaluated by combining the slic-
ing method and SCET. The only missing result to apply this is the SCET
soft function at NNLO and we have developed an algorithm, based on the
sector decomposition, to evaluate all of its contributions. To validate this al-
gorithm, we focused on the part of the cross section proportional to α2

snf and
showed that the rapidity and the infrared singularities cancel accordingly.
Finally, by using ordinary differential equations, we also evaluated this part
of the cross section analytically and found a perfect agreement with the nu-
merical results, from our sector decomposition based algorithm. Therefore,
we conclude that the study presented in this proceedings constitutes a proof
of concept of an approach that can be generalised to other processes at high
orders.

We thank Mateusz Dobija for helping us to optimise our implementation
of the CUBA library. The project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 665778.
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