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We present a general form of the three-nucleon scattering amplitude.
Our result is an operator form in which the scattering amplitude is written
as a linear combination of scalar functions and operators acting on spin
states. Using this form greatly reduces the numerical complexity of the
so-called, three dimensional treatment of the Faddeev equations and can
potentially lead to more accurate calculations of scattering observables at
higher energies.
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1. Introduction

A general operator form of the three-nucleon (3V) scattering amplitude
has potential applications in calculations that employ the so-called three di-
mensional (3D) formalism to calculate observables in the nucleon—deuteron
scattering process. Solutions of the relevant equations using first order terms
in the nucleon—nucleon transition operator were obtained in [1] and demon-
strated that for certain kinematical configurations, the precision of the 3D
calculations is better than the traditional partial wave approach. This ob-
servation motivates the development of a full 3D calculation.

In our approach, we use the Faddeev equation

T — P 4+ iCGoPT, (1)

where T is the 3N transition operator, f is the two-nucleon transition oper-
ator, Gy is the free propagator, and Pisa permutation operator composed
from particle transpositions P = Py3Ps3 + Pi3Py3. Observables for the 3N
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elastic scattering and breakup processes are constructed from two types of
matrix elements containing the same initial state | ¢) with a deuteron and a
free nucleon with the relative momentum gq,. In elastic scattering, the final
state (¢’ | corresponds to a deuteron and a free nucleon with the relative
momentum g and in the breakup, the final state (¢ | describes three free
particles. For the latter, observables are constructed from

AP — (g | (1+ P)T | ), (2)
while for the elastic channel from
Adestic — (¢! | PGy + PT | 6). 3)

Looking at (2) and (3), it can be concluded that, in order to describe both
processes at a given energy, we only need to solve equation (1) for the state
T ¢).

In the 3D approach, quantum mechanical operators are represented with-
out using angular momentum decomposition. Instead, the three-dimensional
momentum degrees of freedom of the nucleons are used. In practice, this
means that we will be interested in matrix elements of the scattering ampli-
tude (pq | T | ¢), where p and q are three-dimensional Jacobi momentum
vectors. Considerations of numerical complexity lead to the conclusion that
spatial rotation symmetry must be taken into account by employing the
newly developed general form of the scattering amplitude [2] in order to
create a practical numerical realization. Since there are 8 possible spin and
8 possible isospin states for the 3V system, a naive numerical representation
of (pq | T'| ¢) requires knowledge of 8 x 8 = 64 complex numbers for every
p and q. If each component of the momentum vectors is discretized over a
grid of 32 points, then the numerical representation of the scattering am-
plitude would require ~ 10" complex numbers. This is clearly unfeasable.
However, by utilizing the general form of the 3N scattering amplitude [2],
this large number can be reduced to ~ 10'!. More details on the numerical
complexity of the problem and the general form of the 3V scattering am-
plitude can be found in [2]. In the following, we briefly discuss the operator
form of T' | ¢) following the considerations in [2].

2. Rotation invariance

Considering the T' | ¢) state in more detail, it is easy to work out that
when projected onto a final momentum eigenstate (pq |, with p, q being
Jacobi momenta, it has the following general form:

(pq|T|¢) = [X(p.a,q0)]" | ). (4)
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In (4), [X (p,q,qo)]ls is an isospin—spin operator that can depend on the
final Jacobi momenta p, g and on the free nucleon momentum q,. Further,
| s) is a pure 3N isospin—spin state. Square brackets are used to denote the
matrix representation for operators in the spin (s) or isospin—spin (is) space.

Symmetry with respect to spatial and isospin rotations results in X
having a rotational symmetry. This allows us to use the algorithm from [3]
to find the general operator form of X. First, we split this operator into
isospin and spin components X = XS0sPin @ Xspin - Qummetry of X with
respect to isospin rotations is achieved by using scalar combinations of the
three single nucleon isospin operators acting in the spaces of particles 1, 2
and 3. Symmetry with respect to spatial rotations is more complicated since
the spin part, X*P™ can depend on three momenta. The algorithm from
[3] takes, as input, the building blocks of the operator XsPin in this case,
the Jacobi momenta p, q in the final state, the free nucleon momentum q
and the vectors of spin operators &(1), 6(2), 6(3) acting in the spaces of
particles 1, 2 and 3. The resulting general form of X®P™ that is invariant
under bpatlal rotations reads

[XP"(p,q,45)]" = Y @.(p, 4, 0) [Or (P, 0. 90)]" 5)

where X®PI" is defined by the scalar functions x, and the operators O,. are [2]

Ql(pa q, q()) 1, Q (pa(bqo) =4qp X &(1) '&(3)>
Oz2(p,a,90) =p-6(1), O2(p,q,q) =gy x 6(2)-6(3),

QB(p’ q, QO) =p- &(2)7 Q 3(paqaq0) :&( ) X &(2) A(3)7
Oua(pyq,90) =P 6(3), O21(p,q,90) =p-6(1) p-6(2),

QS(pa q, q()) =q- &(1)7 O 5(p7q’q0) =P &(1) p-&(?)),
Os(p,q,90) =q-6(2), O26(P;q:90) =p-6(1) q-6(2),
07(p,q,q0) = q G(3), O2(pya,q9) =p-6(1) q-6(3),

Os(p, 4, 90) =g, 6(1), O25(py 4, 90) =P~ 6(1) g - 5(2),
Os(p,a,q) = ~&(2), O20(P;4:90) =p-6(1) qy - 5(3),
O10(P,q,90) = o - 5(3), O30(p,4:90) =P 6(1) 6(2)-6(3),
Qll(p’ q, QO) = ( ) &(2) ) 031(]3, q, qo) =P &(1) p X &(2) . &(3)7
O12(p,q,90) =6(1)-6(3), O32(py 4, 90) = p-6(1) g x 6(2) - &(3),
O13(p,q,90) =5(2)-6(3), O33(P, 4, 40) =P~ 6(1) 4y x 6(2) - 6(3),
914(p’ q, qo) =pX 6’( ) : &(2) ) 034(1)’ q, qo) =P &(1) a(1) x &(2) . &(3)7
O15(p, 4, q0) =p x 6(1)-6(3),  Oss5(p,q,90) =p-6(2) p-&(3),
O16(p,a,90) =P x 6(2)-6(3),  Oss(p,a,q0) =p-6(2) q-6(3),
017(p,4:q0) =ax 6(1)-6(2),  Os1(p,4,40) =P-6(2) 4y 6(3),
O13(p,a,q0) =g x 6(1)-6(3),  Oss(pyg;90) =p-6(2) 6(1)-6(3),
O19(P,4:q0) =4 % 6(2) - 6(3),  Os0(p,q,90) =p-6(2) px &(1)-5(3),
OQO(T” q, ‘Io) =4qp X &(1) . &(2) ) 040(pa q, q()) =P &(2) q X &(1) : &(3) )
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Ou1(p,a,40) =p-6(2) gy x 6(1)-6(3),  Osa(p,g,90) =q-6(2) 6(1)-6(3),
O12(p, 4, 90) = q-6(1) q-6(2), O54(p,4,90) = - 6(2) px 6(1) - 6(3),
O13(py 9, 90) = q-6(1) q-6(3), Os5(p;4590) =q-6(2) g x&(1)-6(3),
O14(p,4:9,) = q-6(1) g5 6(2), Os6(P,4,90) = q-6(2) gy x 6(1) - 6(3),
Os5(p,a,40) = q-6(1) gy - 5(3), Os7(p, 4, 49) = g0 - 6(1) 6(2) - 6(3),
O16(p,a,0) = q-6(1) 6(2) - 6(3), Oss(p,a,9)) =p-6(1) p-6(2) p-6(3),
Ow(p,a,90) =q-6(1) px6(2)-6(3),  Oso(p,a,90) =p-6(1) p-6(2) g-6(3),
O1s(P,4:90) =q-6(1) % 6(2)-6(3),  Oco(Pyg,a0) =p-6(1) p-6(2) q,-6(3),
O4g(p, 4,4)) =q-6(1) ¢y x6(2)-6(3), Osi(p,g,9,) =p-6(1) q-6(2) g-6(3),
Os0(p,4,40) = q-6(1) 6(1) x 6(2) - 6(3), Os2(p,a,90) =P-6(1) q-6(2) g - 6(3),
Os1(p,4:90) = q-6(2) g-6(3), Oe3(ps4:90) = q-6(1) q-6(2) q-6(3),
Os2(p,a,q0) = q- 6(2) q,- 6(3) O6s(p,a,qp) = q-6(1) q-6(2) q, - 6(3).

Using (5) in [2], we proposed to write the scattering amplitude (pq | T |
¢) in the general form

[(p.a|T|¢)]" ZZT P44 | 7) ® ([Or(p, 2, 90)°] | 5)) ,  (6)

v r=1

where | ) is one of the eight possible isospin states of the 3V system, | s) is a
pure 3N spin state, and the amplitude is defined by the scalar functions 7.
We also discussed the arguments of these scalar functions and suggested,
following [4], to use

(P, q,q0) = 7)) <p2,q2,q(%,qo Xq-qyXD,q-qo,qo-P (7)

Since 7,/ are scalar functions, they depend on only six real arguments which
leads to a significant reduction of numerical work in comparison to the naive
representation of (pq | T' | ¢) mentioned in the introduction.

The operator form (6) can be plugged into the Faddeev equation (1).
Next, the spin dependecies can be removed and the Faddeev equation can
be rewritten as a set of coupled linear equations for the scalar functions 7,/
that define the scattering amplitude. Details on this procedure are given
in [2]. Solving the resulting linear equations requires the carefull numerical
treatment of the so-called moving singularities resulting from the singular
behaviour of the free propagator and two-nucleon (2NV) transition operator
at the deuteron binding energy. More details on the moving singularities
and their treatment can be found in [5].

3. Summary and outlook

In [2], we showed that in order to construct a practical, 3D realization
of calculations for nucleon—deuteron scattering, the general operator form of
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the scattering amplitude (6) should be used. The discussion in this paper
assumes that only two nucleon interactions are present. Additionally, we do
not consider any relativistic corrections to the scattering amplitude.

Unfortunately, in order to have a good description of experimental data,
3N forces should be included in the calculations [8-13]. Furthermore, we
expect the direct 3D treatment of the momentum degrees of freedom to have
the largest benefits over traditional calculations that use angular momentum
decomposition at high energies, where many partial waves need to be taken
into account in order to achieve convergence. Both of these issues determine
the direction of our future work.

Some steps towards including the 3N force were already taken in [6]
where we developed the general operator form of the non-local 3N potential;
the operator form of the local 3N force is available in [7]. Our ambition is
also to include relativistic corrections into the calculations, thus significantly
extending the energy range of our calculations. This is still a distant goal,
however, we believe the general form of the 3NN scattering amplitude can
easily be extended to facilitate relativistic corrections. We expect that this
can be achieved by including the dependence on the total momentum of the
3N system in the scattering amplitude.

This work was supported by the National Science Centre (NCN), Poland,
under grants No. 2016,/22/M/ST2/00173 and No. 2016/21/D/ST2/01120.

REFERENCES

[1] K. Topolnicki et al., Fur. Phys. J. A 51, 132 (2015).

[2] K. Topolnicki, J. Golak, R. Skibinski, H. Witata, Phys. Rev. C' 96, 014611
(2017).

[3] K. Topolnicki, J. Golak, R. Skibiriski, H. Witata, Fur. Phys. J. A 52, 188
(2016).

4] 1. Fachruddin, Ch. Elster, W. Glockle, Phys. Rev. C 68, 054003 (2003).

5] Ch. Elster, W. Glockle, H. Witala, Few-Body Syst. 45, 1 (2009).

6] K. Topolnicki, Fur. Phys. J. A 53, 181 (2017).

7] H. Krebs, A. Gasparyan, E. Epelbaum, Phys. Rev. C 87, 054007 (2013).

8] E. Epelbaum, H. Krebs, U.-G. Meifiner, Fur. Phys. J. A 51, 53 (2015).

9] E. Epelbaum, H. Krebs, U.-G. Meifner, Phys. Rev. Lett. 115, 122301 (2015).

[10] D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C' 92, 064001
(2015).

[
[
[
[
[
[


http://dx.doi.org/10.1140/epja/i2015-15132-x
http://dx.doi.org/10.1103/PhysRevC.96.014611
http://dx.doi.org/10.1103/PhysRevC.96.014611
http://dx.doi.org/10.1140/epja/i2016-16188-8
http://dx.doi.org/10.1140/epja/i2016-16188-8
http://dx.doi.org/10.1103/PhysRevC.68.054003
http://dx.doi.org/10.1007/s00601-008-0003-6
http://dx.doi.org/10.1140/epja/i2017-12376-4
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1140/epja/i2015-15053-8
http://dx.doi.org/10.1103/PhysRevLett.115.122301
http://dx.doi.org/10.1103/PhysRevC.92.064001
http://dx.doi.org/10.1103/PhysRevC.92.064001

2296 K. TOPOLNICKI ET AL.

[11] H. Krebs, A. Gasparyan, E. Epelbaum, Phys. Rev. C 85, 054006 (2012).

[12] V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meifiner, Phys. Rev. C' 77,
064004 (2008).

[13] V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meifiner, Phys. Rev. C 84,
054001 (2011).


http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001

	1 Introduction
	2 Rotation invariance
	3 Summary and outlook

