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In this paper, we review the most recent developments of the four-
dimensional unsubstraction (FDU) and loop-tree duality (LTD) methods.
In particular, we make emphasis on the advantages of the LTD formalism
regarding asymptotic expansions of loop integrands.
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1. Introduction

Theoretical predictions in high-energy physics are based on the Quantum
Field Theory (QFT) called the Standard Model (SM) or any of its possible
extensions. Although QFT is a very powerful theoretical tool, it also suffers
from some unphysical weaknesses, or in other words, it is poorly defined in
some aspects. Quantum corrections in QFT are described by loop Feynman
diagrams in which the validity of the theory is extrapolated to arbitrary large
energy scales, much above the Planck scale. In QFT, massless particles, such
as gluons or photons, can be emitted with zero energy, and are represented
by a quantum state which is different from the state describing the absence of
real radiation. Finally, the emission of particles in parallel directions cannot
be distinguished from the emission of a single particle. These unphysical
aspects have a price, such as the proliferation of infinities when the theory
is defined in the four dimensions of the space-time.

The traditional approach to solve this problem, and to extract physi-
cal predictions from the theory, consists in altering the dimensions of the
space-time to e.g. d = 4−2ε. In Dimensional Regularization (DREG) [1–5],
the singularities appear as explicit poles in 1/ε after integration of the loop
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momenta and the phase space of real radiation. After renormalisation of
the ultraviolet (UV) singularities, virtual and real quantum corrections con-
tribute with poles in 1/ε of the opposite sign such that the total result
is finite. Although this procedure efficiently transforms the theory into a
calculable and well-defined mathematical framework, a big effort needs to
be invested to evaluate loop integrals in higher space-time dimensions, and
to adequately subtract the singularities of the real radiation contributions,
particularly at higher perturbative orders.

Therefore, perturbative calculations would be much simpler if we could
keep the dimensions of the space-time to four. To this extent, and be-
sides different variants of DREG, several groups have defined new regu-
larisation schemes that do not alter the dimensions of the space-time or
change it to an integer number, such as the four-dimensional formulation
(FDF) [6] of the four-dimensional helicity scheme, the six-dimensional for-
malism (SDF) [7], implicit regularisation (IREG) [8], four-dimensional reg-
ularisation/renormalisation (FDR) [9], and four-dimensional unsubtraction
(FDU) [10]. For a review of all these methods, see e.g. Ref. [11].

In this paper, we introduce FDU [10, 12–15], and review the main fea-
tures of the loop-tree duality (LTD) [16–20] on which it is based. The idea
behind FDU is to exploit a suitable mapping of momenta between the virtual
and real kinematics in such a way that the summation over the degenerate
soft and collinear states is performed locally at integrand level without the
necessity to introduce infrared (IR) substractions. Suitable counter-terms
are used to cancel, also locally, the UV singularities in such a way that calcu-
lations can be performed without altering the dimensions of the space-time.
The method should improve the efficiency of Monte Carlo event generators
because it is meant for integrating simultaneously real and virtual contribu-
tions. We also explain why LTD is advantageous for asymptotic expansions
of loop integrands, due to the fact that it reduces the loop integration domain
to the Euclidean space of the loop three-momentum. The LTD formalism
or a similar framework has also been used to derive causality and unitarity
constraints [21], or to integrate numerically subtraction terms [22], and can
be related to the forward limit of scattering amplitudes [16, 23]. It has also
been used in the framework of the color-kinematics duality [24].

2. Four-dimensional unsubstraction from the loop-tree duality

LTD [16–18] transforms any loop integral or loop scattering amplitude
into a sum of tree-level-like objects that are constructed by setting on-shell a
number of internal loop propagators equal to the number of loops. Explicitly,
LTD is realised by modifying the ı0 prescription of the Feynman propagators
that remain off-shell
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GF(qj) =
1

q2j −m2
j + ı0

GF(qi)−−−−−→
on−shell

GD(qi; qj) =
1

q2j −m2
j − ı0 ηkji

, (1)

with kji = qj − qi, and ηµ a future-like vector. From now on ηµ = (1,0),
which is equivalent to integrate out the loop energy component through
the Cauchy residue theorem. The left-over integration is then restricted
to the loop three-momenta. The dual prescription can hence be +ı0 for
some dual propagators, and −ı0 for others, and encodes in a compact and
elegant way the contribution of the multiple cuts that are introduced by
the Feynman tree theorem [25]. The on-shell condition is given by δ̃ (qi) =
ı 2π θ(qi,0) δ(q

2
i −m2

i ), and determines that the loop integration is restricted
to the positive energy modes of the on-shell hyperboloids (light-cones for
massless particles).

It is interesting to note that although the on-shell loop three-momenta
are unrestricted, after analysing the singular behaviour of the loop integrand,
one realises that thanks to a partial cancellation of singularities among dif-
ferent dual components, all the physical IR singularities are restricted to a
compact region of the loop three-momentum [19]. This relevant fact allows
to construct the mappings between the virtual and real kinematics based on
the factorisation properties of QCD, as illustrated graphically in Fig. 1, and
then the summation over degenerate soft and collinear states.

Fig. 1. Interference of the Born process with the one-loop scattering amplitude
with internal momentum qi on-shell,M(1)

N (δ̃ (qi)) ⊗M(0) †
N (left), and interference

of real processes with parton splitting p′ir → p′i + p′r: M
(0)
N+1 ⊗M

(0) †
N+1(p

′
ir) (right).

The dashed line represents momentum conservation. In the soft/collinear limits,
the momenta qi−1 = qi− pi and p′ir become on-shell and the scattering amplitudes
factorise.

As usual, the NLO cross section is constructed in FDU from the one-loop
virtual correction with m partons in the final state and the exclusive real
cross section with m+ 1 partons in the final state

σNLO =

∫
m

dσ
(1,R)
V +

∫
m+1

dσ
(1)
R , (2)
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where the virtual contribution is obtained from its LTD representation

dσ
(1,R)
V =

∑
i

∫
`

2Re
〈
M(0)

N

∣∣∣M(1,R)
N

(
δ̃ (qi)

)〉
ON ({pj}) . (3)

In Eq. (3),M(0)
N is the N -leg scattering amplitude at LO, andM(1,R)

N is the
renormalised one-loop scattering amplitude, which also contains integrand
representations of the self-energy corrections of the external legs, even if they
are massless and then ignored in the usual calculations because their inte-
grated form vanishes. The delta function δ̃ (qi) symbolises the dual contri-
bution with the internal momentum qi set on-shell. The integral is weighted
with the function ON that defines a given observable, for example the jet
cross section in the kT-algorithm. The renormalised amplitude includes
appropriate counter-terms that subtract the UV singularities locally, as dis-
cussed in Refs. [10, 15], including UV singularities of degree higher than
logarithmic that integrate to zero.

The real phase space is rewritten in terms of the virtual phase space and
the loop three-momentum∫

m+1

=

∫
m

∫
`

∑
i

J (qi, {pj})Ri(qi, {pj}) , (4)

where J (qi, {pi}) is the Jacobian of the transformation, and Ri({p′j}) =

Ri(qi, {pj}) defines a complete partition of the real phase space∑
i

Ri(qi, {pj}) =
∑
i

∏
jk 6=ir

θ
(
y′jk − y′ir

)
= 1 , (5)

which is equivalent to split the phase space as a function of the minimal
dimensionless two-body invariants y′ir = s′ir/s. In this way, the NLO cross
section can be cast in the form

σNLO =

∫
m

∫
`

∑
i

[
2Re

〈
M(0)

N

∣∣∣M(1,R)
N

(
δ̃ (qi)

)〉
ON ({pj})

+J (qi, {pj}) Ri
({
p′j
}) ∣∣∣M(0)

N+1

({
p′j
})∣∣∣2 ON+1

({
p′j
})]

, (6)

where the external momenta p′j , the phase space and the tree-level scattering

amplitudeM(0)
N+1 are rewritten in terms of the loop three-momentum (equiv-

alently, the internal on-shell loop momenta) and the external momenta pi of
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the Born process. The cross section defined in Eq. (6) has a smooth four-
dimensional limit and can be evaluated directly in four space-time dimen-
sions. DREG is only necessary to fix the UV renormalisation counter-terms
in order to define the cross section in e.g. the MS scheme, the rest of the
calculation is stable with d = 4.

Analogously, at NNLO, the total cross section consists of three contri-
butions

σNNLO =

∫
m

dσ
(2,R)
VV +

∫
m+1

dσ
(2,R)
VR +

∫
m+2

dσ
(2)
RR , (7)

where the double virtual cross section dσ
(2,R)
VV receives contributions from the

interference of the two-loop with the Born scattering amplitudes, and the
square of the one-loop scattering amplitude with m final-state particles, the
virtual–real cross section dσ(2,R)

VR includes the contributions from the interfer-
ence of one-loop and tree-level scattering amplitudes with one extra external
particle, and the double real cross section dσ(2)RR are tree-level contributions
with emission of two extra particles. The LTD representation of the two-loop
scattering amplitude is obtained by setting two internal lines on-shell [17].
It leads to the two-loop dual components 〈M(0)

N |M
(2,R)
N (δ̃ (qi) , δ̃ (qj))〉, while

the two-loop momenta of the squared one-loop amplitude are independent
and generate dual contributions of the type 〈M(1,R)

N (δ̃ (qi))|M(1,R)
N (δ̃ (qj))〉.

In both cases, there are two independent loop three-momenta and m final-
state momenta, from where we can reconstruct the kinematics of the one-
loop corrections entering dσ(2,R)

VR , and the tree-level corrections in dσ(2)RR.

3. Asymptotic expansions in the Euclidean space of the loop
three-momentum

Asymptotic expansions are useful when we are interested in kinematical
configurations exhibiting a hierarchy of physical scales, masses and external
momenta, and the final answer can be approximated by a series in the ratio
of two or several scales. Although the series expansion of integrated expres-
sions is well-defined, it is desirable to first find a suitable expansion of the
integrand which is expected to be simpler to integrate than the full expres-
sion. However, it is well-known that the naive expansion of loop integrands
does not lead, in general, to the correct result. Several complementary ex-
pansions in different kinematical regions need to be considered, the so-called
expansion by regions [26, 27] describing the hard and the soft regions. The
reason for that is simply due to the fact that in a Minkowski space, such as
the loop momentum, the square of a vector can vanish even if the compo-
nents are non-zero, due to the metric. This is not the case of an Euclidean
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space. And this is precisely one of the advantages of LTD, because after
integrating out the energy component of the loop momentum, the left over
integration lies in the Euclidean space of the loop three-momentum.

Consider, for example, the following one-loop integral in the case when
0 < p2 � M2 with p0 > 0. The naive Taylor expansion of the integrand
leads to ∫

`

1

(`2 −M2 + ı0)[(`+ p)2 −M2 + ı0]

=

∫
`

1

(`2 −M2 + ı0)2

(
1 +

2` · p+ p2

`2 −M2 + ı0
+ · · ·

)
. (8)

This expansion, however, is not valid in the region where `2 'M2 because in
that case, p2 is not the smallest quantity in the denominator of the second
Feynman propagator. Therefore, Eq. (8) needs to be balanced with the
expansion in a complementary kinematical region to obtain the full result.

The corresponding LTD representation on the opposite, and for the first
of the two cuts, is given by

−
∫
`

δ̃ (`)

2` · p+ p2 − ı0
= −

∫
`

δ̃ (`)

2` · p

∞∑
n=0

(
−p2

2` · p

)n
(9)

with δ̃ (`) = ı 2π θ(`0) δ(`
2 − M2). But since ` is set on-shell with mass

M and has positive energy, the scalar product 2` · p is positive definite
and of O(M), and the Taylor expansion in Eq. (9) is well-defined for any
value of the loop momentum. In Ref. [14], this procedure has been used for
the first time as a proof of the efficiency of LTD, in particular, asymptotic
expressions for the H → γγ one-loop amplitude have been obtained from
the corresponding LTD representation both in the large and the small mass
limits of the internal particle running in the loop, including charged scalars,
fermions (top quarks) and W bosons.

4. Conclusions

We have reviewed the FDU/LTD formalism for the calculation of phys-
ical cross sections and differential distributions. In FDU/LTD, all the IR
and UV singularities are cancelled locally, and virtual and real corrections
are evaluated simultaneously, which should be advantageous in Monte Carlo
implementations. Also, we have shown that LTD is advantageous regarding
the direct evaluation of asymptotic expansions of loop integrands because it
involves an Euclidean space.
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