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Representations are derived for the basic scalar one-loop vertex Feyn-
man integrals as meromorphic functions of the space-time dimension d in
terms of (generalized) hypergeometric functions 2F1 and F1. Values at
asymptotic or exceptional kinematic points as well as expansions around
the singular points at d = 4+2n, n being non-negative integers, may be de-
rived from the representations easily. The Feynman integrals studied here
may be used as building blocks for the calculation of one-loop and higher-
loop scalar and tensor amplitudes. From the recursion relation presented,
higher n-point functions may be obtained in a straightforward manner.
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1. Introduction

The systematic treatment of Feynman integrals is one of the basic in-
gredients of any perturbative calculation in quantum field theory. In gauge
field theories, the Feynman integrals may have both ultraviolet and infrared
singularities, and the necessary regularizations are usually performed using
a space-time dimension d = 4 − 2ε, where ε is the regulator. At one loop,
one has to treat two issues concerning dimensionally regularized Feynman
integrals: (i) the calculation of n-point integrals; (ii) the calculation of ten-
sor integrals. In a variety of publications, it has been shown that, besides a
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direct calculation, a general n-point tensor Feynman integral may be alge-
braically reduced to a basis of scalar one- to four-point functions [1], with
higher powers ν of propagators and in higher dimensions d = 4 + 2n − 2ε.
Using recurrence relations [2–5], one may get representations with all ν = 1,
although yet at d = 4+2n−2ε with non-negative integer n. Such a represen-
tation in higher space-time dimensions may be organized such that it avoids
the creation of inverse Gram determinants, which are known to destabilize
realistic loop calculations [6, 7].

Having all this in mind, it is evident that the seminal articles by ’t Hooft
and Veltman on scalar one-loop integrals [8] and by Passarino and Veltman
on tensor reduction [9] for one- to four-point functions in 1978 set the stage
for decades. They solved the determination of the Laurent expansions in ε for
these functions from the leading singular terms upto including the constant
terms, at n = 0. Later, the leading ε terms were determined in [10], and the
general expansion in ε was studied in [11], again at n = 0.

Although there are many attempts to determine the scalar one-loop in-
tegrals as meromorphic functions in the space-time dimension d, a complete
solution in terms of special functions has not been given so far. The most
important article on the subject is [12], where solutions have been found for
scalar one- to four-point integrals in d dimensions by solving iterative differ-
ence equations for them. The solutions depend on Gauss’ hypergeometric
function for two-point functions, additionally on the Appell function F1

(a special case of the Kampé de Fériet function and one of the set of Horn
functions) for three-point functions, and additionally on the Lauricella–
Saran function FS for four-point functions. In our understanding, the study
[12] is not complete because the authors failed to determine sufficiently gen-
eral expressions for certain boundary terms which they call b3.

In this article, we close the above-mentioned gap left in [12] by applying
another technique, starting from Feynman parameter representations for
the Feynman integrals, deriving an iterative master integral. For vertices,
we solve here the iterative two-dimensional Mellin–Barnes representation.
Our version of the boundary term b3 allows to cover the complete physical
kinematics in the complex d-plane. The most interesting case of four-point
functions with a term b4 has also been solved and will be published elsewhere.

2. Definitions

The scalar one-loop n-point Feynman integrals are defined as

Jn ≡ Jn
(
d; {pipj} ,

{
m2
i

})
=

∫
ddk

iπd/2
1

Dν1
1 D

ν2
2 · · ·D

νn
n

(1)



Scalar One-loop Vertex Integrals as Meromorphic Functions of Space-time . . . 2315

with inverse propagators Di = (k+ qi)
2−m2

i + iε. We assume νi = 1 as well
as momentum conservation and all momenta to be incoming,

∑n
i pi = 0.

The qi are loop momenta shifts and they will be expressed for applications
by the external momenta pi. The F function is independent of a shift of
the integration variable k due to the dependence on the differences qi − qj .
Further, the difference of two neighboring momentum shifts qi equals to an
external momentum. We use the Feynman parameter representation for the
evaluation of the Feynman integrals (1)

Jn = (−1)nΓ (n− d/2)
1∫

0

n∏
j=1

dxjδ

(
1−

n∑
i=1

xi

)
1

Fn(x)n−d/2
. (2)

Here, the F function is the second Symanzik polynomial. It is derived
from the propagators, M2 ≡ x1D1 + · · ·+ xnDn = k2 − 2Qk + J . Using
δ(1 −

∑
xi) under the integral in order to transform linear terms in x into

bilinear ones, one obtains

Fn(x) = −

(
n∑
i=1

xi

)
× J +Q2 =

1

2

∑
i,j

xiYijxj − iε , (3)

where the Yij are elements of the Cayley matrix, introduced for a systematic
study of one-loop n-point Feynman integrals e.g. in [13],

Yij = Yji = m2
i +m2

j − (qi − qj)2 . (4)

We will discuss the one-loop integrals as functions of two kinematic matrices
and determinants, which were introduced by Melrose [13]. The Cayley deter-
minant λ12...n is composed of the Yij introduced in (4), and its determinant is

λn ≡ λ12...n =

∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n
Y12 Y22 . . . Y2n
...

...
. . .

...
Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣ . (5)

We also define the (n− 1)× (n− 1) dimensional Gram determinant

Gn ≡ G12···n = −

∣∣∣∣∣∣∣∣∣
(q1 − qn)2 . . . (q1 − qn)(qn−1 − qn)

(q1 − qn)(q2 − qn) . . . (q2 − qn)(qn−1 − qn)
...

. . .
...

(q1 − qn)(qn−1 − qn) . . . (qn−1 − qn)2

∣∣∣∣∣∣∣∣∣ .
(6)
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Both determinants are independent of a common shifting of the momenta qi.
After elimination of one x-variable from the n-dimensional integral (1), e.g.
xn, by use of the δ function in (2), the F function becomes a quadratic form
in x = (xi) with linear terms in x and with an inhomogeneity Rn,

Fn(x) = (x− y)TGn(x− y) + rn − iε = Λn(x) +Rn . (7)

The following relations are also valid:

Rn ≡ rn − iε = −
λn
Gn
− iε (8)

and
yi =

∂rn
∂m2

i

= − 1

Gn

∂λn
∂m2

i

≡ −∂iλn
gn

, i = 1 . . . n . (9)

The auxiliary condition
∑n

i yi = 1 is fulfilled. The notations for the F func-
tion are finally independent of the choice of the variable which was eliminated
by use of the δ function in the integrand of (2). The inhomogeneity Rn is
the only variable carrying the causal iε prescription, while e.g. Λ(x) and the
yi are by definition real.

The simplest case of a one-loop scalar Feynman integral is the one-point
function or tadpole

J1
(
d;m2

)
=

∫
ddk

iπd/2
1

k2 −m2 + iε
= − Γ (1− d/2)

(m2 − iε)1−d/2
. (10)

Finally, we introduce the operator k−, which will reduce an n-point Feynman
integral Jn to an (n−1)-point integral Jn−1 by shrinking the kth propagator,
1/Dk

k−Jn = k−
∫

ddk

iπd/2
1∏n

j=1Dj
=

∫
ddk

iπd/2
1∏n

j 6=k,j=1Dj
. (11)

3. The master formula for the Feynman integrals Jn

We study the general case with Gn 6= 0 and Rn 6= 0. Other cases are
simply derived from the formulae given here. One may use the well-known
Mellin–Barnes representation in order to decompose the integrand of Jn
given in (2) as follows:

1

[Λn(x) +Rn]
n− d

2

=
R
−(n− d

2 )
n

2πi

+i∞∫
−i∞

ds
Γ (−s) Γ

(
n− d

2 + s
)

Γ
(
n− d

2

) [
Λn(x)

Rn

]s
,

(12)
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for |Arg(Λn/Rn)| < π. The condition always applies. As a result of (12),
the Feynman parameter integral of Jn becomes homogeneous

Kn =
n−1∏
j=1

1−
∑n−1

i=j+1 xi∫
0

dxj

[
Λn(x)

Rn

]s
≡
∫

dSn−1

[
Λn(x)

Rn

]s
. (13)

In order to solve this integral, we introduce the differential operator P̂n
[14, 15],

P̂n
s

[
Λn(x)

Rn

]s
≡

n−1∑
i=1

1

2s
(xi − yi)

∂

∂xi

[
Λn(x)

Rn

]s
=

[
Λn(x)

Rn

]s
, (14)

into the integrand of (13)

Kn =
1

s

∫
dSn−1P̂n

[
Λn(x)

Rn

]s
=

1

2s

n−1∑
i=1

n−1∏
k=1

uk∫
0

dx′k(xi − yi)
∂

∂xi

[
Λn(x)

Rn

]s
.

(15)
After a series of manipulations in order to perform one of the x-integrations
— by partial integration, eating the corresponding differential — and ap-
plying a Barnes relation [16] (item 14.53 at page 290 of [17]), one arrives at
the following recursion relation:

Jn
(
d,
{
qi,m

2
i

})
=
−1
2πi

+i∞∫
−i∞

ds
Γ (−s)Γ

(
d−n+1

2 + s
)
Γ (s+ 1)

2Γ
(
d−n+1

2

) (
1

Rn

)s

×
n∑
k=1

(
1

Rn

∂rn
∂m2

k

)
k−Jn

(
d+ 2s;

{
qi,m

2
i

})
. (16)

Equation (16) is the master integral for one-loop n-point functions in space-
time dimension d, representing them by n integrals over (n− 1)-point func-
tions with a shifted dimension d + 2s. This Mellin–Barnes integral repre-
sentation is the equivalent to Eq. (19) of [12]. There, an infinite sum over a
discrete parameter s was derived in order to represent an n-point function
in space-time dimension d by simpler functions Jn−1 at dimensions d+ 2s.

4. The three-point function

According to master formula (16), we can write the massive 3-point func-
tion as a sum of three terms, each of them relying on a two-point function,
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relying on one-point functions. After analytically performing the two-fold
Mellin–Barnes integrals, we arrive at

J3
(
d;
{
p2i
}
,
{
m2
i

})
= J123 + J231 + J312 (17)

with

J123 = Γ

(
2− d

2

)
R

d
2
−2

3 b123

−
√
π Γ

(
2− d

2

)
Γ
(
d
2 − 1

)
Γ
(
d−1
2

) ∂3λ3
λ3

R
d
2
−1

12

4λ12

 ∂2λ12√
1− m2

1
R12

+
∂1λ12√
1− m2

2
R12


× 2F1

[
d−2
2 , 1 ;
d−1
2 ;

R12

R3

]
+

2

d− 2
Γ

(
2− d

2

)
∂3λ3
λ3

×

 ∂2λ12√
1− m2

1
R12

(m2
1)

d
2
−1

4λ12
F1

(
d− 2

2
; 1,

1

2
;
d

2
;
m2

1

R3
,
m2

1

R12

)
+ (1↔ 2)


(18)

and

b123 = − 1

2G12

∂3λ3
λ3

 ∂2λ12√
1− m2

1
R12

+
∂1λ12√
1− m2

2
R12

 2F1

[
1, 1 ;
3
2 ;

R12

R3

]

−∂3λ3
λ3

 ∂2λ12√
1− m2

1
R12

m2
1

4λ12
F1

(
1; 1,

1

2
; 2;

m2
1

R3
,
m2

1

R12

)
+ (1↔ 2)

 ,

(19)

where ∂iλj··· is defined in (9). Representation (17) is valid for
Re(d−22 ) > 0. The conditions

∣∣∣m2
i

Rij

∣∣∣ < 1,
∣∣∣Rij

R3

∣∣∣ < 1 had to be met during
the derivation. The result may be analytically continued in a straightfor-
ward way, however, in the complete complex domain.

5. Vertex numerics

In Table I, we show one numerical case, further examples are given in
the slides of the presentation at MTTD 2018, see http://indico.if.us.
edu.pl/event/4/. While we agree completely with the “main” parts of the

http://indico.if.us.edu.pl/event/4/
http://indico.if.us.edu.pl/event/4/
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solutions for the Feynman integrals given in [12], our boundary term has
a richer structure and is, contrary to b3 [12], valid for arbitrary kinematics
without additional specific considerations.

TABLE I

Numerics for the constant term of a vertex in space-time dimension d = 4 − 2ε.
Causal ε = 10−20. This work, (17) to (19) is labelled (TR). Bold input quantities
suggest that, according to Eq. (73) in [12] (labelled (OT)), one has to set there
b3 = 0. This choice gives a wrong result for J3. If instead, we choose in the
numerics for Eq. (75) of [12] that

√
−G3 →

√
−G3 + εI = +I

√
|G3|, and include

the non-vanishing value for b3, the J
(OT)
3 gets correct. The setting G3 − εI looks

counter-intuitive for a “momentum”-like function like G3.[
p2i
]
,
[
m2

i

]
[−100, +200, −300], [10, 20, 30]

G3, λ3 +480000, −19300000
m2

i /r3 0.248705, 0.497409, 0.746114∑
J , Eq. (18) −0.012307377− 0.056679689 I∑
b, Eq. (19) +0.047378343I

J
(TR)
3 =

∑
J +

∑
b −0.012307377− 0.009301346 I

b3 [12] +0.047378343I
b3 +

∑
J [12] −0.012307377− 0.009301346 I

J
(OT)
3 =

∑
J b3 → 0, gets wrong

(−1)×FIESTA 3 [18] −(0.012307 + 0.009301 I)

LoopTools/FF [19] −0.012307377− 0.009301346 I
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