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Precision measurements of properties of the electroweak W - and
Z-bosons provide strong constraints on the Standard Model (SM) and ex-
tensions thereof. This sensitivity crucially depends on the availability of
accurate theoretical predictions for these quantities, including higher-order
radiative corrections. This contribution gives a brief overview of available
calculations and compares the estimate of theory uncertainties with the
projected experimental precision of future e+e− collider proposals. Then
it is shown how numerical Mellin–Barnes integrals can be used to evaluate
higher-order loop integrals that depend on three or more independent mass
and momentum scales. As a concrete physical application, the complete
two-loop corrections to Z → bb̄ are considered.
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1. Status of electroweak precision observables

After the discovery of the Higgs boson, there is overall very good agree-
ment between theory predictions and experimental data for the electroweak
SM, see, for example, Ref. [1]. It should be noted that many of the relevant
data inputs into such a global fit have been determined with an experimen-
tal precision of better than the per-mille level, making the agreement with
theory even more impressive. As a result, electroweak precision data puts
strong constraints on physics beyond the SM, which could be parametrized
in terms of an effective field theory framework [2]. Some of the most con-
straining quantities include:

— The W -boson mass, which can be predicted from the Fermi constant,
GF, of muon decay;

— The total Z-boson width, ΓZ ;
— Various branching fractions of the Z-boson, such as R` ≡ Γ had

Z /Γ `Z
and Rb ≡ Γ bZ/Γ had

Z ;
— The hadronic Z-peak cross section, σ0

had, which corresponds to the
process e+e− → Z(∗) → hadrons;

— The effective weak mixing angle sin2 θfeff , which is given in terms of the
ratio of the vector and axial-vector couplings of the Z → ff̄ vertex,
sin2 θfeff = [1− Re(gfV/g

f
A)]/(4|Qf |).

Note that, in general, these are not true observables, but so-called “pseudo-
observables,” since the effects of QED and QCD radiation have been removed
in the definition of GF, sin2 θfeff and σ0

had, see, for example, Ref. [3, 4].
Table I shows a selection of important pseudo-observations, together

with the current experimental and theoretical uncertainties. It is important
to emphasize that the theory errors are estimates based on experience and
several well-motivated but somewhat ambigious principles, so that the true
magnitude of the missing higher orders could well be larger [5]. Thus, it is
generally desirable to have a situation where the theory errors are subdom-
inant compared to the experimental errors.

Over the course of more than 30 years, many groups have contributed to
the calculation of SM corrections to these quantities. One-loop corrections
have been known for a long time [7]. They have been supplemented by
two-loop QCD corrections [8] and partial three- and four-loop corrections
of the order of O(αtα

2
s ) [9], O(αtα

3
s ) [10], O(α2

tαs) and O(α3
t ) [11], where

αt = y2
t /(4π) and yt is the top Yukawa coupling. Furthermore, fermionic

electroweak two-loop corrections (i.e. from diagrams with closed fermion
loops) are known for all relevant quantites [6, 12, 13], but full two-loop
corrections have been completed so far only for MW [14], sin2 θ`eff [15] and
sin2 θbeff [16].
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TABLE I

Selected electroweak precision pseudo-observables, together with the current ex-
perimental uncertainties [1] and theory error estimates [5, 6]. The last column lists
the most important missing orders for the theory error estimate.

Experiment Theory error Main source
MW 80.385± 0.015 MeV 4 MeV α3, α2αs

ΓZ 2495.2± 2.3 MeV 0.5 MeV α2
bos, α

3, α2αs, αα
2
s

σ0
had 41540± 37 pb 6 pb α2

bos, α
3, α2αs

Rb ≡ Γ b
Z/Γ

had
Z 0.21629± 0.00066 0.00015 α2

bos, α
3, α2αs

sin2 θ`eff 0.23153± 0.00016 4.5× 10−5 α3, α2αs

Even this impressive body of work will not be sufficient for the level of
precision of several proposed e+e− colliders, which could run at a center-
of-mass energy of about 91 GeV to significantly improve the constraints on
electroweak precision observables. These are:

— The GigaZ option of the International Linear Collider (ILC) [17], which
is planned to have polarized e− and e+ beams and accumulate more
than 50 fb−1 of data near the Z pole;

— The Future Circular Collider (FCC-ee) [18, 19], which may be able to
accumulate about 30 ab−1 near the Z pole at each of two detectors;

— The Circular Electron–Positron Collider (CEPC) [20], which like
FCC-ee has a ring collider design but a lower integrated target lu-
minosity of 150 fb−1 at two detectors.

Owing to the large sample statistics expected at these machines, a much
more precise experimental determination of the pseudo-observables in Ta-
ble I will be possible. The estimated measurement uncertainties are sum-
marized in Table II.

TABLE II

Projected experimental and theoretical uncertainties for some electroweak precision
pseudo-observables.

Measurement error Intrinsic theory
ILC CEPC FCC-ee Current Future†

MW [MeV] 3–4 3 1 4 1
ΓZ [MeV] 0.8 0.5 0.1 0.5 0.2
Rb [10−5] 14 17 6 15 7
sin2 θ`eff 1 2.3 0.6 4.5 1.5
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As evident from the table, the currently available theoretical calculations
for the SM predictions will not be sufficient in this case. Instead, at least a
major part of the three-loop contributions and partial four-loop corrections
should be computed to reduce the impact of theory errors. The last column
in Table II shows an estimate of the achievable precision if the complete
two-loop and O(αα2

s ) corrections, the fermionic O(α2αs) and O(α3) correc-
tions, and the leading four-loop corrections in the large-mt limit will become
available. This estimate is based on an extrapolation from the known or-
ders of the perturbation series, assuming that is approximately behaves as
a geometric series [21].

2. Bosonic O(α2) corrections

As mentioned in the previous section, the two-loop corrections from di-
agrams without closed fermion loop (henceforth called “bosonic”) have not
yet been computed for most of the relevant pseudo-observables. Their eval-
uation begins with several familiar steps that need to be carried out for any
loop project and typically heavily rely on (partially) automated computer
software tools. In our case, these are the following:

Diagrams and amplitudes are generated automatically with the program
FeynArts 3 [22]. The Lorentz and Dirac algebra is performed within the
framework of Mathematica [23]. UV divergences are absorbed using on-shell
renormalization, with the necessary counterterms defined in Ref. [24]. The
electroweak pseudo-observables have been defined such that IR divergences
are either absent or can be easily factorized. However, individual diagrams
and loop integrals can still be IR divergent, so that a regulator is required,
for which we use dimensional regularization.

In addition to these standard steps, one needs to evaluate two-loop ver-
tex integrals with up to four independent mass and momentum scales. It is
impractical to attempt to solve these integrals analytically, since this would
lead to unwieldly expressions and the requirement to define new basis func-
tions. On the other hand, numerical methods are not limited in the number
of independent scales, but it is non-trivial to reach sufficient numerical pre-
cision to obtain reliable results.

In our collaboration, several numerical techniques have been used to
obtain at least two independent evaluations for each two-loop integral. No
tensor reduction has been performed, but instead integrals with non-trivial
numerator structures are performed directly. For the bosonic two-loop Z →
ff̄ corrections, this leads to O(1000) different integrals, many of which have
not been computed before either numerically or analytically.
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Two-loop integrals with sub-loop self-energy bubble can be efficiently
evaluated using the dispersion-relation technique described in Refs. [25].
More general vertex integrals have been computed with the following two
approaches: (a) sector decomposition and (b) Mellin–Barnes (MB) repre-
sentations. Both methods offer an automated procedure for isolating UV
and IR divergencies.

A challenge for both approaches is the numerical stability for Minkow-
skian kinematics, when one may encounter spurious singularities related to
thresholds. In sector decomposition [26] this is addressed through a complex
contour deformation of the Feynman parameter integrals [27], which is imple-
mented in several public packages, such as Fiesta [28] and SecDec/pySecDec
[29, 30]. Nevertheless, one may encounter numerical stability problems for
particular ratios of masses and momenta or for pinched contours [31].

In the MB approach, threshold singularities are reflected by bad conver-
gence behaviour of the MB integrals. For example, the basic two-loop sunset
integral can be cast into the MB representation

=
−1

(2πi)3

∫
dz1dz2dz3

(
m2

1

)−ε−z1−z2 (m2
2

)z2 (m2
3

)1−ε+z1−z3
×
(
−p2

)z3 Γ (−z2)Γ (−z3)Γ (1 + z1 + z2)Γ (z3 − z1)

×Γ (1− ε− z2)Γ (ε+ z1 + z2)Γ (ε− 1− z1 + z3)

Γ (2− ε+ z3)
.

Here, the integrations are along contours parallel to the imaginary axis.
The p2-dependent term then becomes(

−p2
)z3 =

(
p2
)z3 e−iπRe z3 eπ Im z3 , (1)

where the last term blows up for Imz3 →∞. One can mitigate this behaviour
by rotating the contour in the complex plane [32]. In this case, the z3

integration may be parametrized as z3 = z0
3 + (a + ib)t, where z0

3 , a and b
are real constants and t runs from −∞ to ∞. The expression(

−p2
)z3 =

(
p2
)z03+ibt

e−iπ(z
0
3+at) eat log p2+πbt (2)

then contains two terms in the last exponential, which may be arranged to
compensate each other through suitable choices of a and b. However, there
are cases where this method does not work, for example, if p2 = m2

1 = m2
2 =

m2
3, in which case all power terms with exponent z3 cancel except for (−1)z3 .
In this case, however, one can alternatively apply shifts of the integration

contour(s) parallel to the real axis [4, 16, 33, 34]. Whichever poles are crossed
by this contour, shift need to be accounted for by explicitly adding back
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their residues. One can oftentimes arrange the direction of the shift of each
variable of the multi-dimensional MB integral, such that the remaining MB
integral is numerically of much smaller magnitude than the original one, thus
reducing the demand for numerical precision of the integration. In addition,
the shifts can improve the asymptotic behaviour of the integrand, since the
rate of decay of a gamma function, Γ (x + iy), for |y| → ∞ depends on the
value of x.

The generation of MB integrals from a Feynman integral and the isolation
of UV and IR divergencies can be performed automatically with the help
of the computer algebra tools MB [35], MBresolve [36], barnesroutines [37],
Ambre [38] and PlanarityTest [39]. These programs can be used both for
planar and non-planar two-loop topologies. The contour rotation and shift
techniques are applied by a new code MBnumerics [40].

By comparing SecDec 3 with MBnumerics, we find that the MB method
with contour shift oftentimes yield much higher precision with less com-
puting time than sector decomposition. However, the availability of two
different methods is still important for independent cross-checks. Further-
more, while SecDec is highly automatized, the application of MBnumerics is
automatic for certain classes of integrals, but requires additional user input
for adaptation to new integral classes.

These numerical methods have been applied recently to the calculation of
the bosonic two-loop contributions to the Z → bb̄ vertex [16]. The correction
to the effective weak mixing angle for this coupling, sin2 θbeff , was found to
be −0.22 × 10−4, which is of the typical size expected for an electroweak
NNLO effects. While this is small compared to the experimental uncertainty
for this quantity (0.016) [41], it is noteworthy that the bosonic two-loop
contributions are not much smaller than the fermionic ones (0.86 × 10−4)
[13]. The detailed results for the bosonic two-loop corrections to sin2 θbeff have
been published in Ref. [16] in terms of a simple fit formula that captures the
dependence on the input parameters MW , MH and mt.

The calculation of the corresponding corrections for the Z → ff̄ vertices,
where f stands for leptons or first- and second-generation quarks, is currently
underway [42]. This will also allow one to determine the bosonic corrections
to branching ratios and the total Z-peak cross section.
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