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1. Introduction

In modern high-energy physics experiments, in order to closely scrutinize
(and eventually go beyond) our established particle physics models such as
the Standard Model (SM), it is important to push the precision of theoretical
predictions that follow from these models to the highest possible level. All
parameters that appear in these quantum field theories such as the SM
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change as functions of the energy scale, in a well-defined way that is governed
by so-called renormalization group equations. These, in turn, depend on a
number of renormalization group parameters that can be deduced from the
underlying quantum field theory.

Perhaps the most fundamental of such renormalization group parameters
is the Beta function, governing the running of the gauge coupling constant
and, consequently, much effort has been invested into precision determina-
tions of this coefficient. After seminal work at one-loop order |1, 2], demon-
strating the asymptotically free nature of the strong coupling constant and,
therefore, establishing Quantum Chromodynamics (QCD) as a central part
of the Standard Model, perturbative corrections have been pushed to 2-loop
[3, 4], 3-loop [5, 6] and 4-loop |7, 8] level. Five-loop results have appeared
over the last ten years or so, first for the case of Quantum Electrodynamics
(QED) [9-11], then for physical QCD with gauge group SU(3) [12, 13|, and
finally for QCD with more general gauge groups [14, 15, 18, 19].

Of course, the (gauge-invariant) Beta function is not the only funda-
mental parameter governing renormalization of the gauge theory. All fields
and parameters of the theory need to be renormalized, giving rise to a set
of renormalization constants (RCs) that can be evaluated order-by-order in
perturbation theory. Perhaps the second most important representative of
this set is the (gauge-invariant) renormalization constant for the quark mass,
needed for a precise evolution of measured low-energy quark masses to cur-
rent and future high-energy collider experiments. It has been known at two
[20] and three loops [21, 22| for a long time already; at four loops, com-
plete results for SU(N) and QED as well as general Lie groups are available
[23, 24]; at five loops, mass renormalization is known for SU(3) as well as
general Lie groups [16, 25, 26].

The remaining members of the set of RCs depend on the gauge param-
eter. At four loops, these are known for more than a decade for SU(N) and
Lie groups, see [8, 27| and references therein. Full gauge dependence for
the case of Lie groups has been added only recently [16, 17]. At five loops
and for a general Lie group, all of them are presently known in Feynman
gauge from [16, 17|. The linear dependence on the gauge parameter has
been calculated in [18] and the full gauge dependence in [19].

In this work, we present our results for the gluon field anomalous dimen-
sion obtained in [18], which together with the results obtained in [17] allows
for the extraction of the Beta function [18]. Our result for the Beta function
confirms the result as given in [15] by an independent approach, which is
mandatory given the complexity of the five-loop calculation.

In the following, we define the set of renormalization constants and
anomalous dimensions we are after, and introduce the set of group invari-
ants that are needed to express the higher order results. Finally, we present
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our results for the five-loop gluon field anomalous dimension (in the Feyn-
man gauge), from which we extract the (gauge-invariant) Beta function. We
refrain from presenting the details of the calculation but refer the reader
to Ref. [18] for an extended description of the procedure. Throughout the
paper, we work in dimensional regularization around d = 4 — 2¢ space-time
dimensions and in the MS scheme.

2. Renormalization constants and anomalous dimensions

The fermion-, gauge- and ghost fields as well as fermion mass, gauge
coupling and gauge-fixing parameter of the gauge theory are renormalized
multiplicatively via

Yy, = \/Z>2wra Ay = \/Z>3Ara Ch = v/ chra (1)

my = Zymy, gb = U ZgGr,  Erp = ZebL - (2)

We have used the subscript 'b’ and ’r’ for bare and renormalized quanti-
ties, respectively. All renormalization constants (RCs) have the form of
Z; = 1+ O(g?). There actually is no need to renormalize the gauge-fixing
term ~ (0A)?/&r, such that setting Z; = Z3 leaves us with five indepen-
dent renormalization constants only. A very economic way of recording
the various renormalization constants Z; is to merely list the corresponding
anomalous dimensions, defined by

Yi = —6111#2 In ZZ . (3)

Following usual conventions, instead of considering Z;, one renormalizes
the gauge coupling squared (which in our notation is

Ca g2 (1)

“ 1672

(4)

with C'p the quadratic Casimir operator of the adjoint representation of
the gauge group) with the factor Z, = Zg2 and calls the corresponding
anomalous dimension v, = 27, = 3 the Beta function. Note that, due to
the renormalization scale independence of the bare gauge coupling, using
Egs. (2) and (3), this immediately implies

B=e+0y,2lna & Oyea=—ale—p]. (5)

The Beta function is a gauge invariant object. The second gauge invariant
anomalous dimension is 7,,, corresponding to the renormalization of the
quark mass.
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To complete the renormalization program, we are left with choosing (be-
sides the gauge invariants 5 and ~,,) three further RCs. These three co-
efficients will necessarily be gauge-parameter-dependent. In practical cal-
culations, it can sometimes be convenient to consider ‘vertex RCs’ which
are products of the Z;, such as those that multiply the 3-gluon, 4-gluon,
ghost-gluon and quark-gluon vertex. These vertex RCs are usually denoted
as Zi (where j € {3g,4g, ccg,¥1g}). Out of this set, we found it convenient
to evaluate the combination Z{Y = \/Z3 Z5 Z,, giving us the anomalous
dimension ;Y. For the remaining two of the minimal set of five RCs, we
simply pick Z> and Z§, encoded in the respective anomalous dimensions 72
and 5.

Once the minimal set of renormalization constants (chosen here to be
Yms By 5, 71Y and 79, as explained above) is known, all other anomalous
dimensions can be reconstructed from simple linear relations, since they are
related via gauge invariance of the QCD action (see e.g. [27])

vz = 2(15%9 —45) - B, 79 =3 (Y —45) - 8, (6)
4
N o= AT - B, WY = — A5+ (7)

In order to be able to present our results for v3 and 3, we first need to
define our notation concerning group invariants. To this end, we reiterate
notation that we had already utilized in previous works [14, 16, 17]. We
focus on a Yang—Mills theory coupled to Ny fermions in the fundamental
representation. It is straightforward to generalize our results to fermions in
a (single) arbitrary representation R by substituting all generators of the
fundamental representation with generators of R.

The real and antisymmetric structure constants f%¢ are defined by the
commutation relations T%T? — TPT® = j f%°T¢ hetween Hermitian genera-
tors T° of a semi-simple Lie algebra, with trace normalization Tr(T%T?) =
Tré®. The quadratic Casimir operators of the fundamental and adjoint
representations (of dimensions N and Ny, respectively) are then defined
in the usual way, as T%T* = Cp1 and fod fbed = O 5. To facilitate com-
pact representations of our results, we find it convenient to use the following
normalized combinations of group invariants:

_ NiTp _ Cr 8

In loop diagrams, one typically encounters traces of more than two group
generators, giving rise to higher order group invariants. These higher order
traces can be systematically classified in terms of combinations of symmet-
ric tensors [29]. Rewriting the generators of the adjoint representation as
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[F)p. = —if®, we need the following three combinations (again, we nor-
malize conveniently):

[T (TeTtTerd) )
dl - NATFQCX 9 (9)
sTr (T°T°TT?) sTr (FFFeF?)
d2 == 3 ’ (10)
NATrC}
_ [sTx (FeFPFeFd))?
d3 = NACT : (11)

Here, sTr(ABCD) = :Tr(ABCD + ABDC + ACBD + ACDB + ADBC +
ADCB) is a fully symmetrized trace.

Taking the gauge group to be SU(N) and setting Ty = 2 and Ca = N,
our set of normalized invariants then reads [29]

N¢ N2 -1

_ e 12
nf 2N7 Cf 2N2 Y ( )
N*—6N?%+18 N%+6 N?% +36
dy = T =, dy= e (13)
24N 24N 24N

From here, one can, for example, easily obtain the SU(3) coefficients, corre-
sponding to physical QCD.

3. Results

In the following, we present our results for the gauge field anomalous di-
mension 73 and the Beta function. The results for the remaining anomalous
dimension have been presented in [16, 17].

In terms of the renormalized gauge coupling a as defined in Eq. (4), we
have obtained

8n; — (13 — 3¢)

6 + 310 + Y320® + y33a® +ysaat + ... . (14)

3= —a

The coefficients 73, are functions of the group invariants and the gauge pa-
rameter. At five loops and in Feynman gauge {7, = 1, we have obtained [18]

21335 34 = y3u [16nf]4 + 343 [160]° + Y342 [1614)% + 7341 [16724] + Y340 ,
Y344 = {Cf,l} . {107—|— 144(3,—619/24-432(4}, (15)
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Y342 =

Y341 =

Y340 =
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{c}, cf,dy, 1} - {576(4961/48 — 238(3 + 99(4),

576(16973/288 + 2213 — 198(4 + 72(5),

—10368(55/3 — 41(3 + 12¢4 + 20¢s5),

144(14843/36 + 722(3 + 165¢4 — 816¢5)}, (16)
{c}, ¢t cpdy, ey dy,dy, 1} - {82944 (2509/48 + 67C3 — 145Cs) ,
—1152(135571/16 + 4225¢3 — 3024¢3 — 99¢; — 18900¢5 +
5400(s), —6635520 (13/8 + 2¢3 — 5(5) , 288(476417/72

—23035C3 — 25056(2 + 34929(, — 44640¢5 + 10800s),

13824 (230 — 2354C3 + 54¢5 + 360Cs — 295¢5 + 225(5) ,

6912 (2373 — 4715C3 + 288¢3 + 900(s — 820¢5) ,

—72(1524019/8 — 33931(3 — 478083

+108225¢4 — 73572(5 — 39600¢6)}, (17)
{c}, ¢}, cpda, cp ds, dy, 1} - {20736 (4157 + 768(3) ,

—165888 (11277 /4 + 1541(3 + 335¢5 — 2520(7) ,

1152(2208371/3 + 396403(3 + 91800¢2 — 651154

—647460(5 + 229500¢ — 362880(7),

165888 (236 — 386(3 — 216¢3 — 895¢5 — 357¢7) ,
—5184(1139437/9 — 29587(3 + 18744¢3 + 42880¢,

—124360(5 + 25500¢6 — 33362(7),

—1728(11659/2 — 116251¢3 + 8880¢3 + 171¢4

+59980¢s5 + 40200(s — 99099¢7),

—1728(77920 — 735952(3 — 61272¢2 + 150480¢4

+249580(5 + 76500 + 52479(7),

72(124662829/18 — 4899045¢3 — 63192¢2 + 3669873(4
+4836692¢5 — 2278200(s — 4098024¢7)} , (18)
{ds, 1} - {6912(47317 — 814000(3 + 15294¢2 + 423004

+61390C5 + 4271256 +358848(7),

—144(112182361/9 — 12985044¢3 — 2403444¢3 + 6431460(,
+53855480(5 — 12870750¢6

—30266775¢7)} , (19)

where we used a scalar-product-like notation (e.g. {C?,Cf, 1} - {a,b,c} =

c?ca + ¢tb + ¢) to clearly expose the group structure. Our result has been
confirmed in [19].
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If one needs to reconstruct renormalization constants Z; from the anoma-
lous dimensions ;, one can start from Eq. (3), recalling that Z;(a, &) de-
pends on the renormalization scale through both of its variables. Using the
d-dimensional Beta function of Eq. (5); remembering that the gauge pa-
rameter renormalizes as the gluon field {1, = Z3§1,,; expressing the gauge
parameter as £, = 1 — &, where £ = 0 now corresponds to Feynman gauge;
and converting all anomalous dimensions to our preferred minimal set, one
obtains the relation

i = —a(B — &)@l Zi) — (295 — 245 — B) (€ — 1) n Z;). (20)

The coefficients zi(n) of the RCs Z; = 143, ¢ zi(n)/z—:” finally follow from
solving Eq. (20), requiring 7{“, 7§ and 3 at one loop lower only. In turn,

once the RCs Z; are available, the corresponding anomalous dimensions can

be extracted from the single poles, v; = a@azi(l

From the first of Eq. (6), using the relation 8 = 2(7;"Y — ~5) — 73, this
enables us to obtain the corresponding terms of the Beta function, whose
coefficients we define as

Omuza=—ale—fl=—ale+boa+bra®+bya®+bga’ +bga’+..] .
(21)
We refrain from listing the 2—4 loop results and only show the one-loop result
for normalization and the result at five loops [18]

3 by = [—4ns + 11, (22)
3°by = baan} +bign} + baanF + bainyg + by,
bus = {cg, 1} {—8(107 + 144C3), 4(229 — 480C3)} | (23)

bis = {c}, e dy, 1} - { — 6(4961 — 11424(5 + 4752(4),
—48(46 + 1065¢3 — 378¢4), 1728(55 — 123(3 + 364 4 60Cs),
—3(6231 + 9736¢3 — 3024(4 — 2880¢s)} , (24)
by = {c¢}, ¢} cpdy,cp,da,dy, 1} - { — 54(2509 + 3216¢3 — 6960(s),
9(94749/2 — 28628(3 + 102964 — 39600(s),
25920(13 + 16¢3 — 40(5), 3(5701/2 4 79356(3 — 25488(, + 43200(s),
—864(115 — 1255C3 + 234C4 + 40(s5),
—432(1347 — 2521C3 + 396¢, — 140(s),
843067 /2 + 166014¢3 — 8424¢, — 178200(5} , (25)
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b = {c¢}, ¢}, ¢t cpdy, cp, ds,dy, 1} - { — 81(4157/2 + 384C3),
81(11151 + 5696(3 — 7480Cs),
—3(548732 + 151743C3 + 13068¢, — 346140(s5),
—25920(3 — 4¢3 — 205),
8141995/8 + 35478(3 + 73062¢4 — 7063205,
216(113 — 2594C3 + 396(4 + 500(5),
216(1414 — 15967C3 4 25744 + 8440¢5),

—5048959/4 + 31515(5 — 472234 + 298890(5} , (26)
bio = {ds, 1} - { — 162(257 — 9358(s + 1452(4 + 7700(5),
8296235,/16 — 48903 + 9801(4/2 — 28215(5} . (27)

Out of these 5-loop coefficients, byy has, in fact, been known already for quite
some time from a large-N¢ analysis [30, 31|, while by3 was given in [14], as
a proof-of-concept of our setup that we have used in this and earlier works
[16, 17]. The three coefficients byo, by1 and byo have first been computed
by an independent group [15], using the background field method, infrared
rearrangement [32] and the so-called R* operation 28] in order to map UV
divergences onto the class of massless four-loop two-point functions which
were evaluated via their code FORCER [33-35]. Equations (25)-(27) fully
coincide with the results of [15]. As a further check of the 5-loop expressions
given above, all coefficients reduce to the results given in [13] when setting
the group invariants to their SU(3) values (cf. Eq. (12)).

4. Conclusions

We presented results for the gauge field anomalous dimension and the
QCD Beta function at five-loop orders. All presented results are in agree-
ment with results obtained by other groups using different means. At five
loops for a general gauge group, there are now three independent calculations
for the Beta function and two for the remaining renormalization constants.
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