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R-SYMMETRIC SUPER-QCD AT THE NLO∗
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We report on the recent calculation of the next-to-leading order, super-
QCD corrections to the squark–(anti)squark pair production in the Mini-
mal R-symmetric Supersymmetric Standard Model. The emphasis is put
on highlighting differences compared to the Minimal Supersymmetric Stan-
dard Model. Phenomenological consequences for the LHC are also briefly
discussed.
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1. Introduction

With the Large Hadron Collider being less than two years away from its
second long technical shutdown, there are still no signs of new physics on
the horizon. Other than a few (yet) statistically insignificant “anomalies”
(see, for example, [1] for the recent one), all measurements agree well with
predictions of the Standard Model.

This puts a lot of models which promised to solve the problems of the
Standard Model in an uncomfortable situation. It is especially true for
supersymmetry, where heavy stop squarks lead to significant fine tuning.

In recent years, this situation drew attention towards non-minimal SUSY
models. In the simplest extensions, like the NMSSM, the SQCD sector
remains unmodified compared to the MSSM. More involved extensions can
contain particles such as Dirac gluinos or even exotic states like leptoquarks.

Between those and other proposals, the Minimal R-symmetric Super-
symmetric Standard Model (MRSSM) [2] presents a nice middle ground. It
provides a consistent framework for testing SUSY characteristics not present
in the MSSM (or even the NMSSM), while remaining less baroque than, for
example, the E6SSM.
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2. The Minimal R-symmetric Supersymmetric Standard Model

Table I lists the strongly interacting particles of the model, which is what
we exclusively focus on in this note. The field content of the MRSSM is en-
larged compared to the MSSM to accommodate a Dirac mass term for the
gluino. Hence, it requires an additional Weyl spinor coming from a chiral
adjoint superfield Ô. To preserve supersymmetry, this spinor comes accom-
panied by two real scalar fields, called sgluons and denoted by Op and Os.

TABLE I

Strongly interacting fields of the MRSSM, together with the R-charges of the com-
ponent fields. The superfield in the last line is absent in the MSSM. It comprises
the right-handed component of the Dirac gluino and two real sgluons.

Superfield Boson Fermion

Left-handed (s)quark Q̂L q̃L 1 qL 0

Right-handed (s)quark Q̂R q̃†R 1 q̄R 0

Gluon vector superfield V̂ g 0 g̃L +1

Adjoint chiral superfield Ô O 0 g̃R −1

The characteristic feature of the MRSSM is the presence of an unbroken
R-symmetry [3, 4]. For comparison with the MSSM, one can treat matter
parity of the MSSM, defined as Mp = (−1)3(B−L), as a Z2 subgroup of the
R-symmetry U(1)R = eıαR, obtained by restricting α = π. For α = π and
R ∈ Z, the result is always ±1, with left- and right-handed squark fields
transforming with a minus sign under R-parity. In the MRSSM, this is no
longer true, due to an unrestricted α. Therefore, for a generic α, only a
left–right combination transforms as an R-symmetric singlet. Hence, left–
left and right–right squark pair production is forbidden. Analogously, the
left–right squark–antisquark production is also forbidden, while the left–left
and right–right production is allowed.

Therefore, on a phenomenological level, the difference between MSSM
and MRSSM boils down to three things:

— the presence of Dirac gluinos, reflected either in their direct production
or their contribution to squark pair production as a t-channel mediator;

— the reduction of the inclusive (summed over left and right states) pro-
duction cross section for squark pairs;

— the presence of sgluons.
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Since the LHC is hinting that gluinos (if they exist) must be heavy, we
are focusing here on the (anti)squark production1. We consider two scenar-
ios, called BMP1 and BMP2, where mq = 1.5 TeV, mOp = mO = 5 TeV and
mg̃ = 1 TeV (BMP1) or 2 TeV (BMP2), with mO being a soft-breaking
mass parameter. The mass of the scalar sgluon Os receives additional
D-term contributions raising its mass to, for example,mOs =

√
m2
O + 4m2

g̃ ≈
5.4 TeV in the case of BMP1.

In Fig. 1, we plot the leading order cross sections for the 13 TeV LHC,
for the MSSM and MRSSM. It illustrates the reduction in q̃q̃ production
cross section and increase in the g̃g̃ one for the MRSSM compared to the
MSSM discussed in this section.

Fig. 1. Comparison of the hadronic cross sections for
√
S = 13 TeV LHC for

squark and gluino production in the function of the squark mass. Different flavours
(excluding stops), “chiralities” and charge conjugates are summed over.

3. Virtual corrections

Beyond the leading order, virtual corrections for qq → q̃q̃, gg → q̃q̃†

and qq̄ → q̃q̃† processes need to be computed. In order to extract UV-
and IR-divergencies, we regularise them dimensionally. Since there is no
regularisation scheme which respects SUSY and is, at the time, in accordance
with the standard definition of PDFs, we perform the calculation in two
different regularisation schemes:

1. Dimensional regularisation (HV in the notation of Ref. [5]) is compat-
ible with the standard definition of PDF sets. It requires the intro-
duction of SUSY-restoring counterterms, though.

1 We are mainly interested in a comparison to the MSSM. Hence, we also do not
consider an MRSSM specific signature of sgluon production here.
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2. Dimensional reduction (FDH in the notation of Ref. [5]) preserves
SUSY, but comes with the necessity of introducing a finite shift in
αs and a transformation of the squared amplitudes from FDH to HV.
The latter is performed with universal formulae and is required as the
real correction are calculated in HV and the convolution with PDF
sets also requires HV.

We have computed the required renormalisation constants (see Ref. [6]) in
both HV and FDH, using vanishing quark masses (except for the top quark)
and degenerate squark masses. Mass and field renormalisation constants are
calculated in the on-shell scheme, while the strong coupling is treated such,
that heavy particles decouple.

3.1. Method 1: HV and Passarino–Veltman reduction

Since HV breaks SUSY, we introduce a SUSY-restoring counterterm. In
the case at hand, it is sufficient to only shift the renormalisation constant
of the SUSY-analogue of the gauge coupling, i.e. the coupling δĝs of the
qq̃g̃-vertex: δĝs = δgs + δgrestore. The SUSY-restoring constant reads

δgrestore =
g3s

16π2

(
2CA

3
− CF

2

)
(1)

and is the same in the MSSM, because SUSY breaking effects originate from
gluon contributions which are identical in both models.

To implement the calculation, we used an MRSSM model file generated
by SARAH [7–10] to generate and process amplitudes with the aid of the
Mathematica packages FeynArts [11] and FormCalc [12, 13]. Counterterm
Feynman rules and renormalisation constants have been added by hand into
the model file.

3.2. Method 2: FDH and integrated reduction approach

In this approach, we implement the transition rules [14, 15] for squared
amplitudes from FDH to HV and conversion of δgs from FDH to HV in
GoSam 2 [16, 17]. Model details are passed to GoSam using the UFO in-
terface [18]. The renormalisation of the MRSSM has been added by hand
to GoSam. The counterterms are implemented using OneLOop for the loop
functions and added to the matrix.f90 template in the GoSam interface. The
exact counterterm structure has to be fixed once after generating the con-
sidered process with GoSam.
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4. Real corrections

The infrared divergences from the virtual amplitude cancel against diver-
gences present in real-emission diagrams. The real corrections are calculated
using two, alternative ways, i.e. the two-cut phasespace slicing (TCPSS)
method [19] and the FKS subtraction [20, 21]. The TCPSS relies on two
arbitrary (but small) parameters δs, δc. We compare the two approaches
in Fig. 2 (left), where we plot the TCPSS result as a function of δc. The
FKS result is independent of this parameter, and for a sufficiently small
value of δs, both results are in agreement. For diagrams involving on-shell
resonances we employ a diagram removal procedure [22].
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Fig. 2. Left: Dependence of the two-cut phasespace slicing result on the slicing
parameter δc. For comparison, we include the FKS result. Right: Leading and
Next-to-Leading order cross sections for squark pair production (summed as in
Fig. 1). The lower panels show K-factors together with combined scale and PDF
uncertainties.

5. Results

In Fig. 2 (right), we show the equivalent of the plot in Fig. 1 after adding
NLO corrections. The lower subplots in Fig. 2 (right) show
K-factors, together with combined scale and PDF uncertainties. The K-
factors are moderate, ranging up to 50% for squark masses of 1 TeV and are
what one would expect from NLO corrections to a QCD process.
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The importance of the result can only be appreciated after comparing it
with the MSSM. We do this in two ways. In Fig. 3 (left), we plot the ratio
of MRSSM and MSSM K-factors for the pp → ũLũR process in function
of gluino and common squark masses. The difference between K-factors is
moderate, in the range of ±10%. In Fig. 3 (right), we redo the plot after
summing over squark “chiralities” (obviously, only the MSSM K-factor is
affected). Here, the difference is much more pronounced. The figure empha-
sizes the danger of taking inclusive MSSM squark K-factors and applying
them to the MRSSM.
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Fig. 3. Ratios of MRSSM to MSSM K-factors in the mg̃–mq̃ plane. Left figure
compares only ũLũR production, while the right one sums the MSSM result over
different squark “chiralities”.

Finally, the differential cross sections in two selected observables, that is
transverse momentum and pseudorapity of the hardest squark, are shown in
Fig. 4. Here, the global and differential K-factors agree well in the range of
squark’s pT ∈ [500, 1500] GeV and |η| . 2.
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Fig. 4. Differential distributions of hardest squark’s pT and η.
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6. Conclusions

The MRSSM is an interesting alternative to the MSSM. It is a good
testing ground, both for theorists and experimentalists, to study features of
SUSY not present in the MSSM.

In this work, we have reported on a recent calculation of NLO super-
QCD corrections in the MRSSM to squark pair productions at the LHC.
We hope that the progress in the precision calculations in the beyond the
minimal SUSY phenomenology will encourage experimentalist to perform
studies dedicated to this class of models.
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