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Asymmetric nuclear matter is studied within the relativistic mean field
approach. Models with the ω–ρ and σ–ρ cross-interactions, through their
remarkable ability to modify the density dependence of the symmetry en-
ergy, have been used to analyse the saturation properties of asymmetric
nuclear matter.
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1. Introduction

Due to the absence of adequate nuclear physics theory and of experi-
ments, at densities that characterise the interior of a neutron star, the un-
derstanding of the nuclear matter equation of state, related to the description
of nuclear structures, is still insufficient to correctly solve essential problems
in both nuclear physics and astrophysics. Thus, theoretical description of in-
finite asymmetric nuclear matter and finite nuclear systems bases on models
that meet the results of low-energy scattering or saturation properties of nu-
clear forces. Several theoretical approaches have been developed. It is worth
to mention models based on the relativistic Dirac–Brueckner–Hartree–Fock
theory (relativistic extension of Brueckner–Hartree–Fock approach [1]) [2, 3]
or relativistic quantum hadrodynamics (QHD) [4, 5]. Extensions of the origi-
nal QHDI model, in which baryons interact by exchange of scalar–isoscalar σ
and vector–isoscalar ω mesons, includes additionally the vector–isovector
meson ρ [6].

The construction of an acceptable neutron star model requires extrap-
olation of the available experimental results to higher densities and isospin
asymmetry. In such a case, it is expected to find qualitative effects of details

∗ Presented at the XLI International Conference of Theoretical Physics “Matter to the
Deepest”, Podlesice, Poland, September 3–8, 2017.

(2365)



2366 I. Bednarek, M. Pienkos

of the model on the equation of state. There is also possibility to construct
models that include different exotic forms of matter [7]. This involves as-
sumptions concerning the general structure of Standard Model and suggests
many types of couplings [8, 9]. As neutron star matter is highly asymmetric,
there is a need for a detailed description of the isospin-dependent properties
of neutron star matter and the neutron star itself. The purpose of this paper
is to analyse the properties of nuclear matter and neutron star matter in a
wide range of isospin asymmetry. This was done based on a model that has
an extended isovector meson sector with the ω–ρ and σ–ρ cross-interactions
[10–13].

2. Isospin asymmetric nuclear matter

Nuclear matter equation of state (EoS) considered as the binding energy
per nucleon is a function of baryon density nb = nn + np and the isospin
asymmetry δa, which refers to the relative neutron excess

ε(nb, δa) =
E
nb
−mN , δa =

nn − np
nn + np

, (1)

where E denotes the total energy of the system. Neutron (nn) and pro-
ton (np) number densities are related to their Fermi momentum kF by the
following relation:

nN =
1

3π2
k3

F,N , N = n, p . (2)

The mathematical approach that involves the Taylor series approximation
for the function which describes such EoS is commonly considered as an
effective method to analyse properties of matter under extreme conditions
of density and neutron–proton asymmetry

ε(nb, δa) = ε(nb, δa = 0) + S2(nb)δ
2
a + S4(nb)δ

4
a + . . . (3)

Subsequent terms of expansion (3) represent the binding energy of symmetric
nuclear matter ε(nb, δa = 0) and the second and forth order coefficients
defined as

S2(nb) =
1

2!

∂2ε(nb, δa)

∂δ2
a

∣∣∣∣
δa=0

, S4(nb) =
1

4!

∂4ε(nb, δa)

∂δ4
a

∣∣∣∣
δa=0

. (4)

The representation of ε(nb, δa) by series (3) is directly related to the prob-
lem of finding bounds on this approximation. Analysis that were carried out
basing on different theoretical approaches indicate the dominant role of the
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S2(nb) term at least in the vicinity of the saturation point (nb = n0, δa = 0).
However, at higher densities and large value of the asymmetry δa, the contri-
bution from the quartic term S4(nb) should be taken into account. Leaving
only terms to the second order in isospin asymmetry, the well-known em-
pirical parabolic approximation is obtained. This enables to divide the EoS
of nuclear matter ε(nb, δa) into two parts — the first that is the energy of
symmetric nuclear matter ε(nb, δa = 0) ≡ ε(nb) and the second, isospin-
dependent one. The latter part encodes information about the symmetry
energy whose conventional definition is given by the equation which defines
S2(nb). Subsequently, the functions ε(nb, δa = 0) and S2(nb) have been ex-
panded in a Taylor series around the equilibrium density n0 and the following
expressions can be obtained:

ε(nb, δa = 0) = ε(n0) +
1

2!
9n2

0

∂2ε(nb)

∂n2
b

∣∣∣∣
n0

u2+ . . . , (5)

S2(nb) = S2(n0) + 3n0
∂S2(nb)

∂nb

∣∣∣∣
n0

u+
1

2!
9n2

0

∂2S2(nb)

∂n2
b

∣∣∣∣
n0

u2+ . . . , (6)

where u = (nb − n0)/3n0. All derivatives are evaluated at the point (n0, 0).
This point denotes the equilibrium state of isospin-symmetric nuclear matter
with minimum energy per nucleon and is characterized by the condition

∂ε(nb, δa = 0)

∂nb

∣∣∣∣
n0

= 0 . (7)

Thus, the linear term in the Taylor expansion (5) vanishes. Equations (3),
(5) and (6) can be combined to the following approximated form of the EoS:

ε(nb, δa) = ε(n0) + Esym (n0) δ2
a + Lδ2

au+
1

2!

(
K0 +Ksymδ

2
a

)
u2 . (8)

The above equation expresses the nuclear matter EoS through a series of
coefficients: binding energy of symmetric nuclear matter ε(n0), incompress-
ibility defined as

K0 = 9n2
0

d2ε(nb)

dn2
b

∣∣∣∣
nb=n0

(9)

and parameters, which characterize the isospin-dependent part of the EoS.
These parameters are: the symmetry energy coefficient S2(n0) ≡ Esym(n0),
the slope (L) and curvature (Ksym) of the symmetry energy. The last two
parameters are given by the following equations:

L = 3n0
dEsym(nb)

dnb

∣∣∣∣
nb=n0

, (10)
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Ksym = 9n2
0

d2Esym(nb)

dn2
b

∣∣∣∣
nb=n0

. (11)

Thus, having obtained the equation of state, one can calculate each individ-
ual term that enters formula (8).

3. The model

Constituents of this model are neutrons and protons interacting through
the exchange of scalar σ and vector ω, ρ meson fields. The Lagrangian
function L0 represents: nucleons, mesons, interaction of scalar and vector
mesons with nucleons, and scalar and vector mesons self-interactions

L0 =
∑
N

ψ̄N (γµiDµ −meff,N )ψN + 1
2∂

µσ∂µσ − 1
2m

2
σσ

2

−1
4Ω

µνΩµν − 1
4R

µνRµν + 1
2m

2
ω (ωµωµ) + 1

2m
2
ρ

(
ρµaρaµ

)
+1

4c3 (ωµωµ)2 − 1
3g2σ

3 + 1
4g3σ

4 . (12)

The covariant derivative Dµ and nucleon effective mass meff,N are given by
equations: Dµ = ∂µ + igωωµ + igρINρ

a
µ (IN denotes isospin of nucleon),

meff,N = mN − gσσ, whereas Ωµν , Rµν are field strength tensors of the ω
and ρ mesons. The part of the Lagrangian function that in this model sup-
plements the isospin-dependent sector is considered separately. It includes
the cross-interaction between ω–ρ and σ–ρ mesons

Liso = ΛV(gωgρ)
2(ωµωµ)(ρµaρaµ) + Λ4 (gσgρ)

2 σ2
(
ρµaρaµ

)
. (13)

Thus, the total Lagrangian function, which describes the dynamic of the
system L = L0 + Liso, is the basis for calculating the EoS. The solution
of the equations of motion obtained in the mean field approximation in
which operators of meson fields are replaced by their expectation values:
s0, w0, r0, serves as an input for the calculation of the EoS. Using the energy-
momentum tensor Tµν , the energy density and pressure are given by the
following equations:

〈T00〉 ≡ E = 1
2m

2
ωw

2
0 + 1

2m
2
ρr

2
0 + 1

2m
2
σs

2
0 + 3

4c3w
4
0 + 3ΛV(gωgρ)

2(w0r0)2

+Λ4(gσgρ)
2(s0r0)2 + 1

3g2s
3
0 + 1

4g3s
4
0 + EN , (14)

1
3〈Tii〉 ≡ P = 1

2m
2
ωw

2
0 + 1

2m
2
ρr

2
0 − 1

2m
2
σs

2
0 + 1

4c3w
4
0 + ΛV(gωgρ)

2(w0r0)2

+Λ4(gσgρ)
2(s0r0)2 − 1

3g2s
3
0 − 1

4g3s
4
0 + PN , (15)

where EN and PN are the kinetic parts of the energy density and pressure
defined as
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EN =
∑
N=n,p

2

(2π)3

kF,N∫
0

k2dk
√
k2 +m2

eff,N (16)

and

PN =
∑
N=n,p

1

3π2

kF,N∫
0

dk
k4√

k2 +m2
eff,N

. (17)

Calculations in this paper were done with the use of the TM1 [14] parameter
set (Table I).

TABLE I

TM1 parameter set.

mσ = 511.2 MeV mω = 783 MeV mρ = 770 MeV
gσ = 10.029 gω = 12.614 gρ = 9.2644
g2 = 7.2325 fm−1 g3 = 0.6183 c3 = 71.0375

4. Characteristics of asymmetric nuclear matter

Very important feature of the EoS of nuclear matter is the fact that
the energy per nucleon, at a given density or Fermi momentum, reaches a
minimum. Considering the symmetric nuclear matter, it saturates at den-
sity n0 = 0.145 fm−3 with the binding energy −16.26 MeV, the incom-
pressibility coefficient K0 = 281.16 MeV, the symmetry energy coefficient
Esym = 36.89 MeV, and the symmetry energy slope L = 110.79 MeV [15].
These properties of nuclear matter have been obtained for the TM1 pa-
rameter set. In order to modify the density dependence of the symmetry
energy and to obtain models with softer symmetry energy and lower value
of the slope L, Horowitz and Piekarewicz [10] introduced additional ω–ρ and
σ–ρ cross-interactions. Such an extended isovector sector is characterised by
pairs of parameters (ΛV, gρ) or (Λ4, gρ). These pairs of parameters have been
selected so as to reproduce Esym(nb) = 25.68 MeV at the average baryon
density nb, corresponding to kF = 1.15 fm−1, for which the binding energy
of 208Pb is reproduced [10, 16]. The values of parameters ΛV and Λ4 chosen
for the purpose of this work are summarised in Table II.
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TABLE II

Parameters of the extended isovector sector. These parameters are in the exper-
imentally acceptable range of the binding energy per particle of 208Pb. The last
column includes the value of the symmetry energy slope calculated for the adjusted
values of (ΛV, gρ) and (Λ4, gρ).

ΛV Λ4 gρ L [MeV]

0.0 0.0 9.2644 110.79
0.03 0.0 11.0964 55.76
0.0 0.03 13.5927 46.47

The inclusion of the ω–ρ and σ–ρ terms alters the relation for the sym-
metry energy which now is expressed in terms of effective ρ meson mass

Esym(nb) =
k2

F

6
√
k2

F +m2
eff,N

+
g2
ρ

12π2

k3
F

m2
eff,ρ

, (18)

where
m2

eff,ρ = m2
ρ + 2

(
ΛV(gωgρ)

2w2
0 + Λ4(gσgρ)

2s2
0

)
. (19)

Finding constraints on the properties of asymmetric nuclear matter is very
important due to the correlations between coefficients of equation (8) and
neutron star parameters. Analysing the properties of asymmetric nuclear
matter, the coefficients that characterise density dependence of the EoS (8)
should be specified. These coefficients calculated at equilibrium density na0
depend on the asymmetry parameter δa. The equilibrium density itself also
depends on δa and for more asymmetric matter is shifted to lower density.

The main parameter that specifies the EoS is the binding energy. In
Fig. 1 (a), the binding energy at equilibrium density na0 is presented. In-
creasing the asymmetry δa, which is equivalent to the increasing number of
neutrons in nuclear matter, the binding energy for the fixed value of δa has
been calculated. In the result weakly bound matter is obtained.

The isospin dependence of incompressibility coefficient K0(δa) is pre-
sented in Fig. 1 (b). The incompressibility decreases with the increasing
isospin asymmetry. The asymmetry dependence is rather weak for lower
value of δa and becoming stronger for more neutron reach matter.

Figures 2 (a) and (b) show changes in the main parameters character-
izing the symmetry energy, caused by both the isospin asymmetry and the
modification of the model by virtue of nonlinear ω–ρ and σ–ρ couplings. The
symmetry energy coefficient Esym for lower values of asymmetry increases
and then, after reaching a maximum, decreases. The inclusion of ΛV and
Λ4 parameters shifts the maxima towards higher value of the isospin asym-
metry. The symmetry energy slope L changes with increasing asymmetry
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Fig. 1. The left panel: the minimized energy per nucleon as a function of the
asymmetry parameter δa. The right panel: the isospin-dependent incompressibility
at equilibrium density.
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Fig. 2. The symmetry energy and the slope calculated at equilibrium density as a
function of the asymmetry parameter δa. Results obtained for different values of
ΛV and Λ4 parameters are included.

in the same way as the symmetry energy. However, the most significant
modifications are due to the presence of ω–ρ and σ–ρ couplings. This lowers
considerably the slope and causes softening of the symmetry energy. The
isospin dependence of the properties of nuclear matter is of particular im-
portance in astrophysical applications and especially in modelling neutron
star interiors. In this case, variations in the isospin asymmetry is related to
the change of the model, specifically to the distinction between parametriza-
tions: ordinary TM1 parameter set and TM1 with the extended isovector
sector. EoSs for neutron stars have been constructed basing on the pre-
sented models of asymmetric nuclear matter. This allows one to analyse
how the properties of asymmetric nuclear matter translate into modification
of the properties of neutron star matter. In Fig. 3 (a), EoSs obtained for
TM1 parametrization are depicted. The inclusion of ω–ρ and σ–ρ couplings
increases the asymmetry of the system and thus leads to softer EoSs. The
softening is not very impressive.
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Changes of the EoSs are reflected in the mass–radius relations which are
shown in Fig. 3 (b). Models with softer EoSs give as a results lower values of
the maximum mass. Dots on the individualM–R curves show the behaviour
of selected neutron star configurations which have the same baryon number.
Thus, the differences in masses are due to the difference in the asymmetry of
matter and through this in the symmetry energy for these particular neutron
star configurations.
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Fig. 3. EoSs and M–R relations obtained for different values of parameters ΛV

and Λ4.

The density dependence of the isospin asymmetry of neutron star mat-
ter, for the considered models, is given in Fig. 4 (a). This result is consistent
with the behaviour of the incompressibility of asymmetric nuclear matter.
In Fig. 4 (b), the radial dependence of the isospin asymmetry for the selected
neutron star configurations are presented. In general, models with ΛV and
Λ4 different from zero lead to more asymmetric neutron star matter, espe-
cially in the core of a neutron star.
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Fig. 4. The asymmetry parameter δa as a function of baryon density (left panel)
or radius (right panel) calculated for different values of ΛV and Λ4 parameters.
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The isospin asymmetry includes information about proton concentration
in neutron star matter and through the charge neutrality condition about the
electron concentration. Both, proton and electron relative concentrations
calculated for different values of ΛV and Λ4 are shown in Fig. 5 (a) and
Fig. 5 (b). These figures depict the radial dependence of Yp and Ye calculated
for the selected neutron star configurations. The obtained results indicate
that models with the extended isovector sector lead to considerable lower
proton and electron concentrations in neutron star interiors.
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Fig. 5. The relative concentrations of protons Yp = np/nb and electrons Ye = ne/nb
calculated for different values of ΛV and Λ4 parameters. Results obtained for the
selected neutron star configurations (dots on the M–R curves).

5. Conclusions

Neutron star matter is characterized by a high value of asymmetry, so it
is very important to understand how the properties of nuclear matter depend
on the value of isospin asymmetry. The results obtained in this paper are
consistent with solutions find in the paper by Chen et al. [17] where the
analytical expressions for the saturation properties of asymmetric nuclear
matter have been derived. Isospin-dependent modifications of the properties
of nuclear matter such as the binding energy, incompressibility, symmetry
energy and the symmetry energy slope influence neutron star matter EoS
and the structure of a neutron star.
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