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We present a renormalizable vector-fermion dark matter model, where
two or three components of the dark sector are stable and hence constitute
the observed dark matter relic density. In particular, our model involves
an extension of the Standard Model by a dark U(1)X gauge symmetry
which includes a dark vector Xµ, and two Majorana fermions, ψ+ and ψ−.
Moreover, we employ the Higgs mechanism in the dark sector to give masses
to dark particles; it also provides a second Higgs, h2. Depending on the
masses of these three dark sector particles (Xµ, ψ±), two or three of them
contribute to the dark matter. We have numerically solved a set of coupled
Boltzmann equations describing the evolution of density for different DM
components.
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1. Introduction

Dark matter (DM) hypothesis has been justified by numerous observa-
tions, e.g. effects of gravitational lensing, measurements of rotation curves
of the galaxy clusters and observations of the cosmic microwave background
anisotropies [1, 2]. These effects can be perfectly explained by the hypoth-
esis of WIMPs, i.e. weakly interacting massive particles that should form
DM [3]. However, there are several discrepancies between simulations based
on various collisionless, one-component WIMP models and observations in
the galactic scales, for instance, the ‘too-big-to-fail’ and the ‘cusp-core’ prob-
lems [4]. Since very different DM masses are needed to solve some of these
problems, it is reasonable to consider multi-component DM scenarios. In this
work, we consider an extension of the Standard Model (SM) that provides
two or three (depending on parameters) massive, neutral, stable particles
which can constitute the observed DM density. We also present examples of
numerical solutions of a set of Boltzmann equations describing the evolution
of dark matter density.
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2. The vector-fermion dark matter model

We consider a simple extension of the SM gauge group by an additional
U(1)X gauge symmetry that does not act on any SM particle. The dark
sector of our model has three new fields: Xµ, a gauge vector of the U(1)X ,
a Dirac fermion χ, and a complex scalar S. Charges of χ and S under the
action of U(1)X are 1

2 and 1, respectively, while they are neutral under the
SM gauge group.

Our vector-fermion DM model is described by the following Lagrangian:

L = LSM + LDM + Lportal , (1)

where LSM is the Standard Model Lagrangian, LDM is the dark sector La-
grangian, and the Lportal is the Higgs portal term, which is responsible for all
SM–DM interactions. The dark sector Lagrangian has the following form:

LDM = −1

4
FµνFµν + (DµS)∗DµS + µ2S |S|2 − λS |S|4

+χ̄
(
i /D −mD

)
χ− 1√

2

(
ydS

∗χTCχ+ h.c.
)
, (2)

where Fµν ≡ ∂µXν − ∂νXµ is the field-strength tensor, C ≡ −iγ2γ0 denotes
charge-conjugation operator (with γ2 and γ0 being the gamma matrices) and
Dµ≡ ∂µ + igxqxXµ is the covariant derivative connected with U(1)X , with
gx being the coupling constant and qx denoting the U(1)X charge of the
dark particles. There are also following free parameters: µS and λS , which
enter the potential, the dark Yukawa coupling yd and mD, the Dirac mass
of field χ. The Higgs portal Lagrangian has a very simple form

Lportal = −κ|S|2|H|2 , (3)

where H is the Standard Model Higgs field. The portal coupling constant κ
can be both positive or negative. Note that the above Lagrangian is invariant
under the charge-conjugation symmetry which acts on the dark fields in the
following way:

χ→ χC ≡ −iγ2χ∗ , S → SC ≡ S∗ , Xµ → XCµ ≡ −Xµ . (4)

2.1. The Higgs sector

Let us analyze now the scalar potential part of the Lagrangian

V (H,S) = −µ2H |H|2 + λH |H|4︸ ︷︷ ︸
SM

−µ2S |S|2 + λS |S|4︸ ︷︷ ︸
DS

+κ|H|2|S|2︸ ︷︷ ︸
portal

. (5)
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The stability of scalar potential enforces following constraints: λH > 0,
λS > 0, κ > −2

√
λHλS . Since the above potential is invariant both un-

der SU(2)L×U(1)Y symmetry of H and U(1)X symmetry of S, therefore,
we can choose the vacuum expectation values (vevs) of H and S fields to be
real and non-negative without any loss of generality

〈H〉 =
1√
2

(
0
v

)
, 〈S〉 =

vx√
2
, v, vx ≥ 0 . (6)

The minimization of the above potential gives

v2 =
2κµ2S − 4λSµ

2
H

κ2 − 4λHλS
, v2x =

2κµ2H − 4λHµ
2
S

κ2 − 4λHλS
. (7)

In the unitary gauge, Goldstone bosons of H and S are eaten by the SM
gauge bosons (W±, Z) and the dark vector Xµ, respectively. The fluctua-
tions of real parts of neutral components of the H and S fields are h0 and φ0,
respectively, which mix to form the mass eigenstates h1 and h2 as(
h1
h2

)
= R−1

(
h0
φ0

)
, R =

[
cosα − sinα
sinα cosα

]
, tanα =

κvvx
λHv2 − λSv2x

,

(8)
where α is the mixing angle. Masses of h1 and h2 states are

m2
1,2 = λHv

2(1± sec2α) + λSv
2
x(1∓ sec2α) .

We consider h1 to be the SM-like Higgs particle, therefore, mass of h1 and
vev of H are set to mh1 = 125 GeV, v = 246 GeV. Mass of h2 can be either
larger or smaller than mh1 .

2.2. The dark fermionic sector

After the spontaneous symmetry breaking, the fermionic part of the dark
sector Lagrangian can be rewritten in terms of mass eigenstates as

Ldf =
i

2

(
ψ̄+γ

µ∂µψ+ + ψ̄−γµ∂µψ−
)
− 1

2
m+ψ̄+ψ+ −

1

2
m−ψ̄−ψ−

− i
4
gx
(
ψ̄+γ

µψ− − ψ̄−γµψ+

)
Xµ −

yd
2

(
ψ̄+ψ+ − ψ̄−ψ−

)
φ0 , (9)

where ψ±(=ψC±) are the Majorana (self-conjugate) states, defined as ψ+≡
1√
2
(χ + χC), ψ−≡ 1

i
√
2
(χ − χC) with masses m±=mD±ydvx. Without loss

of generality, we assume yd > 0, therefore m− < m+.
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2.3. The dark sector interactions

We can write down the part of Lagrangian that describes interactions
involving dark sector particles in terms of mass-eigenstates

Lint = −yd
2

(
ψ̄+ψ+ − ψ̄−ψ−

)
φ0 + vxg

2
xX

µXµφ0 +
g2x
2
XµXµφ

2
0

− i
4
gx
(
ψ̄+γ

µψ− − ψ̄−γµψ+

)
Xµ , (10)

where φ0= h1 sinα+h2 cosα. These interactions lead to the following Feyn-
man rules:

hi
ψ±

ψ±

∓iydR2i ,
hi

X

X

i
2m2

X

vx
R2i ,

hi

hj

X

X

i
2m2

X

vx
R2iR2j,

X
ψ+

ψ−

1
2
γµgx (11)

The last vertex gives the only interaction within the dark sector and
it allows dark particles to decay. Note that our model respects a discrete
Z2×Z ′2 symmetry, such that the charges are

Symmetry Xµ ψ+ ψ− φ0 SM

Z2 − + − + +
Z ′2 − − + + +

Since we assume m− < m+, therefore, ψ− particle is always stable. One of
the two remaining DM particles, ψ+ or Xµ, can decay into the other one
and ψ− if this is kinematically allowed.

3. Solving Boltzmann equations and numerical results

The Lagrangian of our model has eight free parameters: gx, mD, yd, µS ,
µH , λS , λH , κ. Since h1 state is assumed to be the SM-like Higgs, its mass
and the vev ofH are determined, so the number of remaining free parameters
is six. We choose the physical basis where free parameters are the masses of
the dark sector particles (mX , m+, m−, mh2), the U(1)X coupling gx, and
the Higgs sector mixing angle sinα.

The Boltzmann equation describes the time dependence of the number
density n of a given kind of particles interacting with others in the expanding
Universe. The set of coupled Boltzmann equations for our model takes the
following form (for the details see Ref. [5]):
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dnX
dt

= −3HnX −
〈
σXXφφ

′
vMøl

〉 (
n2X − n̄2X

)
−
〈
σXψ+ψ−hivMøl

〉
×
(
nXnψ+ − n̄X n̄ψ+

nψ−
n̄ψ−

)
−
〈
σXψ−ψ+hivMøl

〉(
nXnψ− − n̄X n̄ψ−

nψ+
n̄ψ+

)
−
〈
σXhiψ+ψ−vMøl

〉
n̄hi

(
nX − n̄X

nψ+nψ−
n̄ψ+ n̄ψ−

)
−
〈
σXXψ+ψ+
vMøl

〉(
n2X − n̄2X

n2ψ+

n̄2ψ+

)

−
〈
σXXψ−ψ−vMøl

〉(
n2X − n̄2X

n2ψ−
n̄2ψ−

)
+ Γψ+→Xψ−

(
nψ+ − n̄ψ+

nX
n̄X

nψ−
n̄ψ−

)
,

(12)
dnψ−

dt
= −3Hnψ− −

〈
σψ−ψ−φφ

′
vMøl

〉(
n2ψ− − n̄2ψ−

)
−
〈
σψ−ψ+Xhi
vMøl

〉
×
(
nψ−nψ+ − n̄ψ− n̄ψ+

nX
n̄X

)
−
〈
σXψ−ψ+hivMøl

〉(
nXnψ− − n̄X n̄ψ−

nψ+
n̄ψ+

)
−
〈
σψ−hiXψ+
vMøl

〉
n̄hi

(
nψ−− n̄ψ−

nψ+

n̄ψ+

nX
n̄X

)
−
〈
σψ−ψ−XXvMøl

〉(
n2ψ−− n̄2ψ−

n2X
n̄2X

)
−
〈
σψ−ψ−ψ+ψ+
vMøl

〉(
n2ψ− − n̄2ψ−

n2ψ+

n̄2ψ+

)
+ Γψ+→Xψ−

(
nψ+− n̄ψ+

nψ−
n̄ψ−

nX
n̄X

)
,

(13)
dnψ+

dt
= −3Hnψ+ −

〈
σψ+ψ+φφ′
vMøl

〉(
n2ψ+
− n̄2ψ+

)
−
〈
σψ+ψ−Xhi
vMøl

〉
×
(
nψ+nψ− − n̄ψ+ n̄ψ−

nX
n̄X

)
−
〈
σXψ+ψ−hivMøl

〉(
nXnψ+ − n̄X n̄ψ+

nψ−
n̄ψ−

)
−
〈
σψ+hiXψ−
vMøl

〉
n̄hi

(
nψ+− n̄ψ+

nψ−
n̄ψ−

nX
n̄X

)
−
〈
σψ+ψ+XX
vMøl

〉(
n2ψ+
− n̄2ψ+

n2X
n̄2X

)
−
〈
σψ+ψ+ψ−ψ−
vMøl

〉(
n2ψ+
− n̄2ψ+

n2ψ−
n̄2ψ−

)
− Γψ+→Xψ−

(
nψ+− n̄ψ+

nψ−
n̄ψ−

nX
n̄X

)
,

(14)

where 〈σijklvMøl〉 ≡ 〈σijklvMøl〉 is the thermal averaged cross section for the
process ij → kl. Above hi = h1, h2 and φφ′ denote all the allowed SM
particles, including h1, h2.
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The Boltzmann equations form a complicated coupled set, therefore to
solve them, we employ a dedicated C++ code. We compared our numerical
results for two-component case with those of micrOMEGAs [6]1.

Below, we present a two-component DM case (Fig. 1), where ψ+ and
ψ− are stable, and a three-component DM case (Fig. 2), where Xµ, ψ+ and
ψ− are stable2. The (dashed) solid curves show our results for the (equi-

Y
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Ȳψ+

Yψ−
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Fig. 1. These plots show two-component DM scenario, where ψ+ and ψ− are stable
particles. The left and right panels correspond to gx = 0.1, and 3.1, respectively,
whereas other model parameters are shown in the legends. Note the very good
agreement between our results (solid curves) and micrOMEGAs (points). The right
panel satisfies the correct total relic density of DM, Ωtoth

2 ≡ (Ωψ+
+ Ωψ−)h2,

observed by Planck [2] and direct detection limits by LUX2016 [8].
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Fig. 2. These plots show our results for three-component DM scenario, where Xµ,
ψ+ and ψ− are stable. Parameters of the plots are shown in the legends. The left
panel is for gx = 0.04 and the right panel is for gx = 0.74. Note that the right panel
satisfies the correct relic density of DM, Ωtoth

2≡ (ΩX +Ωψ+
+Ωψ−)h2, observed

by Planck [2] and direct detection limits by LUX2016 [8].

1 micrOMEGAs [6] is limited to only two-component DM.
2 To simplify calculations, we have used following variables: x≡(100 GeV)/T , where T
is the temperature of the thermal bath, and Yi ≡ ni/s, where s is the entropy density
of the Universe.
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librium) yields of corresponding dark species, whereas the points represent
values obtained from micrOMEGAs3. The most visible effect is the increase
of annihilation cross sections with gx, what leads to later freeze-out and, in
consequence, to smaller relic density of DM particles. Moreover, it turns out
that the dark gauge coupling gx plays a critical role in the dynamics of dark
matter species, in particular it allows to have semi-annihilation, conversion
and decay processes. A more complete analysis of our vector-fermion DM
model, including parameter scans, is presented in Ref. [5].

4. Conclusions

In this work, we have presented a simple renormalizable extension of the
SM by an Abelian gauge symmetry. The dark sector of our model contains a
dark vector bosonXµ, two dark Majorana fermions ψ± and a second Higgs h2
which serves as a messenger to the visible sector. Depending on the masses
of dark particles Xµ, ψ±, we have two- or three-component DM scenarios.
We have developed a code providing the numerical solution to the set of
three coupled Boltzmann equations for the densities of DM components,
which takes into account not only annihilations into the SM, but also semi-
annihilations, conversions and possible decays within the dark sector. Here,
we presented two sample cases where two (ψ+ and ψ−) and three (Xµ, ψ+

and ψ−) components are stable and contribute to the total DM relic density.

This work is supported by the National Science Centre, Poland (NCN)
research project, decision DEC-2014/15/B/ST2/00108.
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