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It is argued that the superposition approach, where partons are inde-
pendently emitted from longitudinally extended sources in the early stage,
is fully compatible with the experimental results for the forward–backward
multiplicity correlations in Pb+Pb collisions at

√
sNN = 2.76 TeV. The

pertinent correlation analysis is based on the Ph.D. Thesis by I. Sputowska
which includes an unpublished analysis of data taken by the ALICE Col-
laboration. Our calculations show that in the experimentally covered pseu-
dorapidity range ∆η = 1.2, the initial sources in the backward and forward
bins are maximally correlated, which complies to the string-like interpre-
tation of the underlying early-stage production mechanism.

DOI:10.5506/APhysPolB.48.113

1. Introduction

In this paper, we use the method developed in Refs. [1, 2] to confirm that
the mechanism of early particle production at the Large Hadron Collider
(LHC) may be understood, to a good approximation, in terms of emission
from independent sources which extend over a wide longitudinal range. Our
analysis is performed with the help of simple formulas from Ref. [1] for the
∗ Supported by the Polish National Science Center (NCN) grant 2015/19/B/ST2/00937.
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correlation coefficients. It uses the data taken by the ALICE Collaboration
for Pb+Pb collisions at

√
sNN = 2.76 TeV in the form presented in the

Ph.D. Thesis by Sputowska [3].
As it is well-known, the long-range rapidity correlations in hadronic col-

lision experiments reveal information on the dynamics and evolution of the
system in its earliest partonic phase. Experimentally, the multiplicity cor-
relations in early pp and pp̄ collisions [4–9] and nuclear collisions [10, 11]
were followed by the relativistic heavy-ion and pp experiments at the RHIC
[12–14] and LHC [3, 15–18]. Physical pictures, models, and theoretical meth-
ods have been constructed along the quest to understand the data [19–47].

The basic assumptions of the applied superposition framework are fol-
lowing [1, 2]:

(a) Particle emission occurs independently from longitudinally extended
sources.

(b) The forward (F) and backward (B) bins are sufficiently well-separated
in pseudorapidity, such that the transition from the initial state to
the final hadron distribution does not cause mixing between particles
belonging to the F and B bins.

Actually, our approach takes into account three stages typically distinguished
in the evolution of the system: (1) early production of initial particles (form-
ing an entropy density) from sources, (2) hydrodynamic or transport evolu-
tion in the intermediate phase, and finally, (3) production of hadrons and
their subsequent registration in detectors.

Our derivation assumes for simplicity a single type of sources. In
Appendix C, we show how and under what conditions the model may be
generalized to a case with multiple types of sources.

2. Formulas

As explained in detail in Refs. [1, 2] (cf. also Appendix A in the present
work), the above-mentioned stages (1) and (3) involve, from the statistical
point of view, folding of statistical distributions, whereas stage (2) results
in a linear transformation of the particle (fluid) density. The three stages
may be combined to yield a very simple “pocket” formula involving only
one free parameter, relating the correlation of the initial sources sF and sB
in the F and B bins in spatial rapidity, denoted as ρ(sF, sB), to statistical
quantities accessible experimentally. These quantities are the correlation of
the numbers of charged hadrons nF and nB in the experimental F and B
bins in pseudorapidity, denoted as ρ(nF, nB) (a.k.a. the b coefficient), and
the scaled variances of multiplicities in the F and B bins, ω(nF) and ω(nB).
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For symmetric collisions and for symmetrically arranged pseudorapidity bins
ω(nF) = ω(nB) ≡ ω(nA), and we have (see Appendix A)

ρ(sF, sB) =
ρ(nF, nB)

1− δ
ω(nA)

, (1)

where ρ stands for Pearson’s correlation coefficient, ω denotes the scaled
variance, and δ is a phenomenological constant, whose anatomy is discussed
in Appendix A. An important feature is that δ does not depend on the
rapidity separation of the F and B bins, nor (to a good approximation) on
the centrality of the collision. Thus, for a given experimental setup (energy
of the collision, width of the bins in pseudorapidity, detector acceptance), it
is constant. We can rearrange Eq. (1) to extract δ

δ = ω (nA)

(
1− ρ(nF, nB)

ρ(sF, sB)

)
. (2)

It should be stressed that relations (1)–(2) originate solely from assump-
tions (a) and (b) specified above and hold for any experimental data sample
(e.g., any centrality cut). Thus, their verification directly checks assump-
tions (a) and (b). Two straightforward tests emerge here, each based on
one of the above formulas. First, we may use Eq. (2) with the experimental
data for ρ(nF, nB) and ω (nA), as well as with the assumption ρ(sF, sB) = 1
which should hold for not too large bin separations ∆η. If thus obtained
δ is indeed constant, the test is passed and the superposition model works.
Second, we may use a suitably chosen constant value of δ in Eq. (1) and
obtain ρ(sF, sB) at various centralities and bin separations ∆η.

3. Results

We begin presenting our results with the δ parameter obtained from
Eq. (2). The experimental quantities ω (nA) and ρ (nF, nB) are extracted
from a manual digitalization of the points in Figs. (3.3) and (3.4) published
in [3]. The ALICE measurements are carried out with two different methods
of determining the centrality of the collision, VZERO (empty symbols) and
ZDCvsZEM (filled symbols). Essentially, the first method uses the multiplicity
of hadrons in the central bin, whereas the other effectively determines the
number of spectators (or participants) in the collision. We denote the center
and the width of a centrality bin with c̄ and ∆c, respectively.
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Our values for δ are presented in Fig. 1 as a function of ∆c for the F
and B bin separation ∆η = 1.2 (largest accessible experimentally). This
separation is sufficiently large to minimize the mixing between the bins dur-
ing the evolution of the system (our assumption (b)). At the same time,
it is small enough to expect that the sources are maximally correlated, i.e.,
ρ (sF, sB) = 1. We note that the values for δ are within the band 1.1 ± 0.1
for both methods of the centrality determination and for various ∆c and c̄.
Taking into account the fact that ω (nA) and ρ (nF, nB) vary significantly
(even up to factors of 5, cf. Figs. (3.3) and (3.4) in Ref. [3]), the fact that
the values of δ are almost constant is far from trivial and conforms to the
superposition mechanism from independent sources.
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Fig. 1. Values of the δ parameter obtained from Eq. (2) with the data for Pb+Pb
collisions at

√
sNN = 2.76 TeV recorded by the ALICE experiment, digitized by

the authors from Figs. (3.3) and (3.4) of [3]. The result is plotted as a function of
the width of the centrality bin, ∆c, for several centralities of the center of the bin,
c̄, and for two centrality selection methods of Ref. [3]: VZERO (empty symbols) and
ZDCvsZEM (filled symbols). The very similar values of δ conform to the assumption
of emission from independent longitudinally-extended sources which are maximally
correlated over the pseudorapidity separation ∆η = 1.2 between the forward and
backward bins, i.e., ρ(sF, sB) = 1.

Of course, there are departures in δ from a strict constant value, and
there is a number of factors which cause the effect: some remnant mixing
of the bins (caused, e.g., by partons emitted into distant pseudorapidities
in the early stage, or resonance decays in the late stage), non-linearity of
the hydrodynamic or transport evolution, leading to corrections to the sim-
ple Eq. (B.2). Also, there may be nonlinear effects in the early production
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mechanism, as present, e.g., in the mixed model [48], where wounded nucle-
ons [49] are amended with an admixture of binary collisions. The fact that
δ is, to a good approximation, constant shows that these effects are not very
significant. We also note that the obtained values of δ are larger than 1,
which complies to the constraint (B.7).

Next, in Fig. 2, we present the result for the forward–backward correla-
tion of the number of the initial sources, ρ(sF, sB), obtained from Eq. (1),
where we use the average value of δ from Fig. 1, namely δ = 1.1. The
correlation is plotted as a function ∆c for various c̄ and for the data with
both VZERO and ZDCvsZEM centrality determination methods for ∆η = 1.2,
the same as used in Fig. 1. We note that the resulting values for ρ(sF, sB)
are close to 1, in accordance to the hypothesis of a maximum correlation
of sources over a moderate pseudorapidity range. The fact that for certain
cases the points go slightly above 1 (which is mathematically precluded for
the correlation coefficient) is caused by the above-listed effects modifying
the simplest superposition model, as well as by experimental errors, not
incorporated in our analysis.
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Fig. 2. The same as in Fig. 1 but for the forward–backward correlation of the
sources ρ(sF, sB) from Eq. (1), evaluated with the average value of the superposition
parameter δ = 1.11.

Finally, in Fig. 3, we plot ρ(sF, sB) as a function of the pseudorapidity
separation ∆η for the case of ∆c = 10%. For this purpose, the necessary
data were digitized from Figs. (3.1) and (3.6) of Ref. [3]. As before, we use
δ = 1.11. We note that in the covered range of ∆η, the resulting ρ(sF, sB)
is very close to 1 and independent of the centrality c̄.
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Fig. 3. The same as in Fig. 2 but plotted for several values of centrality c̄ as a
function of the forward–backward pseudorapidity separation ∆η.

4. Conclusions

The main result of our analysis is that the hadron production mechanism
based on production from independent sources, strongly correlated over the
accessible pseudorapidity range, works very well in Pb+Pb collisions at the
LHC. The key test here is the constant value of the δ parameter, as exhibited
in Fig. 1. It also shows that the data analysis based on standard measures
of F–B correlations is by all means useful and allows us for access to physics
questions of the particle production mechanism in ultra-relativistic heavy-
ion collisions. Note that the usefulness for the tests of the superposition
mechanism explored here holds despite the effect of centrality fluctuations,
which may be reduced through the use of other more elaborate correlation
measures [16, 40, 43, 45, 50–52].

The fact that ρ(sF, sB) ∼ 1 in the covered range of ∆η < 1.2 and for
all values of centrality indicates that the original sources in the early phase
of the reaction may, indeed, be viewed as longitudinally extended objects
(strings [19]). If such objects extend over rapidity in such a way that the F
and B bins are always covered, then in each event, sF = sB and by definition,
we achieve the maximum correlation, ρ(sF, sB) = 1.

The analysis presented in this paper was model-independent in the sense
that we have only used the assumptions (a) and (b) from Sect. 1, but have
not referred to any specific model of the sources and particle production.
With the method applied here and further spelled out in Refs. [1, 2], such
explicit models may be put to stringent tests with the help of experimental
forward–backward correlation data.
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Appendix A

Superposition model

In this appendix, we recall the relevant formulas in the superposition
model. A detailed derivation is presented in Ref. [1]. Let the number of
produced particles nA in bin A (A = F, B) be composed of independent
emissions from sA sources,

nA =

sA∑
i=1

mi , (A.1)

where mi is a random number of particles produced by the ith source.
The distribution of mi is assumed to be universal, i.e., independent of the
source i. Then, one finds the well-known superposition formulas

〈nA〉 = 〈m〉〈sA〉 ,
var(nA) = var(m)〈sA〉+ 〈m〉2var(sA) . (A.2)

Analogously, for the covariance between two well-separated bins, we get
immediately

〈nFnB〉 =

〈
sF∑
i=1

mi

sB∑
j=1

mj

〉
= 〈m〉2〈sFsB〉 , (A.3)

where we have used the fact that 〈mimj〉 = 〈m〉2, holding for i and j be-
longing to two different well-separated bins. As a result,

cov(nF, nB) = 〈m〉2cov(sF, sB) . (A.4)

Appendix B

Three stage approach

Formulas (A.2), (A.4) correspond to a single superposition step. In par-
ticular, such steps occur in the partonic phase, where partons are produced
from the initial sources (strings), as well as in the late stage, where produc-
tion of hadrons and their subsequent detection takes place. If superposition
steps directly follow one another, the structure of Eqs. (A.2), (A.4) remains
preserved. For instance, this is the case of the hadron production step fol-
lowed by the detection step (where the generic random variable mi would
correspond to the detection of a hadron), hence we may combine these steps
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into a single one. The intermediate evolution stage (hydrodynamics, trans-
port) also preserves the structure of Eqs. (A.2), (A.4) and upon combining
the three stages, one finally has [1]

〈nA〉 = α〈sA〉 ,
var(nA) = β〈sA〉+ γ var(sA) ,

cov(nF, nB) = γ cov(sF, sB) . (B.1)

Let µ denote the random number of partons produced in the first stage,
and m the random number of hadrons produced at final hadronization and
registered by the detector. Further, if the number of partons is denoted with
pA and the density of hydrodynamic fluid after the evolution as hA, we may
approximate the effect of the intermediate phase as

hA = tpA , (B.2)

where t describes the intermediate evolution1. As a result, we find

α = t〈µ〉〈m〉 ,
β = t〈µ〉var(m) + t2〈m〉2var(µ) ,

γ = t2〈µ〉2〈m〉2 . (B.3)

The inverse relations, relating moments of the sources via the moments
on the measured hadrons, read

γ var(sA) = var(nA)− δ〈nA〉 ,
γ cov(sF, sB) = cov(nF, nB) , (B.4)

where the δ parameter is given by relation

δ =
β

α
= ω(m) + t〈m〉ω(µ) . (B.5)

Dividing Eqs. (B.4) side-by-side yields

ρ (sF, sB) =
cov(sF, sB)

var(sA)
=

cov(sF, sB)

var(nA)− δ〈nA〉
=
ρ(nF, nB)

1− δ
ω(nA)

, (B.6)

which is our key formula (1). Note that it involves only one combination of
the parameters of the overlaid distributions and intermediate evolution, δ.

1 A more general affine variant of Eq. (B.2) is used in Ref. [1], but is does not affect
the conclusions.
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The random variable m in Eq. (B.5) corresponds to hadronization of
the fluid folded with the detector acceptance. Due to its statistical na-
ture, production of hadrons from the hydrodynamic fluid is well-described
by a Poisson distribution, whereas detector acceptance is modeled with a
Bernoulli distribution. Folding of the Poisson and Bernoulli distributions
yields a Poisson distribution, hence ω(m) = 1. Since all other parameters in
Eq. (B.5) are positive, we conclude that

δ > 1 . (B.7)

Distributions of µ and m are universal in the sense that they do not
depend on the pseudorapidity of the bin or the centrality of the collision.
The parameter t, which describes the hydrodynamic or transport response,
is also expected to be approximately universal, meaning linear response to
the initial condition [53–56]. Therefore, we expect δ ' const.

Appendix C

Multiple types of sources

Our model uses one type of sources which emit particlesm with the same
distribution, cf. Eq. (A.1). In this appendix, we show that under certain
conditions our general results can be generalized to the case where we have
more types of sources. For the simplest case of two kinds of sources

nA =

SA∑
i=1

mi +

S′A∑
i′=1

mi′ , A = F,B . (C.1)

Then, we find a generalization of Eq. (1) in the form of

ρ(uF, uB) =
ρ(nF, nB)

1−

〈SA〉var(m)+〈S′A〉var(m′)
〈SA〉〈m〉+〈S′A〉〈m′〉

ω(nA)

, (C.2)

where
uA = SA〈m〉+ S′

A〈m′〉 . (C.3)

We note the same structure as in Eq. (1), with δ replaced with the combi-
nation

δ =
〈SA〉 var(m) + 〈S′

A〉 var(m′)

〈SA〉 〈m〉+
〈
S′
A

〉
〈m′〉

. (C.4)
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This combination is constant in two interesting cases:

1. 〈S′
A〉 = λ 〈SA〉 ,

2. var(m) = κ〈m〉, var(m′) = κ〈m′〉 ,

where constants λ or κ do not depend on centrality or the pseudorapidity
separation. In the first case, δ = (var(m)+λvar(m′))/(〈m〉+λ〈m′〉) = const,
whereas in the second case, δ = κ = const.

The correlation ρ(uF, uB) is a more complicated object which now plays
the role of ρ(SF, SB) from Eqs. (1), (2). In a more general analysis with
sources of multiple types, we should keep it as it is. A simplification occurs,
however, when in each event, S′

A ' λSA, i.e., the relative fluctuations are
not too large. Then we have ρ(uF, uB) ' ρ(SF, SB) ' ρ(S′

F, S
′
B).

A physical realization of scenario (1) is the quark–diquark model of
Ref. [57] for the A–A collisions, where we expect that (event-by-event) the
numbers of wounded quarks and diquarks are proportional to each other.
Scenario (2) occurs where the scaled variances of m and m′ are equal. This
is, e.g., the case of the Poisson distributions, or more general negative bino-
mial distributions with the same parameters controlling the scaled variance.

A generalization of the discussion of this appendix to more than two
types of sources is straightforward, with the sums showing up in the formulas
extending from 2 to n kinds.

In conclusion, the analysis of this paper may be extended to the case
where the superposition model involves more types of sources under the con-
dition that the combination (C.4) is (approximately) constant. Conversely,
the constant value of δ (as to a good approximation occurs in Fig. (1)), does
not require the assumption of a single type of sources.
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