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A Gribov-type dispersion relation is treated as an effective description
of interacting gluons forming a hot medium. Temperature dependence of
the Gribov parameter is determined from the fit to the lattice Yang–Mills
results describing thermodynamic functions. To maintain thermodynamic
consistency of the approach, a temperature-dependent bag pressure is in-
troduced. The results obtained for equilibrium functions are generalised in
the next step to non-equilibrium conditions. We derive formulas for the
bulk and shear viscosity coefficients within the relaxation time approxima-
tion. We find evidence for largely enhanced bulk viscosity in the region of
the phase transition.
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1. Introduction

Several phenomenological models of the gluon plasma have been con-
structed in the past [1, 2], see also [3–5], that describe such a system as
an ideal gas of massive, non-interacting quasi-particles with the dispersion
relation of the form of

E(k,M) =

√
k2 +M2(T ) . (1)

(125)
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Here, k is the gluon three-momentum, and E is its energy. A temperature-
dependent mass, M(T ), accounts for the interaction of originally massless
gluons. Thus, in this approximation, the massless interacting gluons become
non-interacting massive particles with two possible polarisation directions.
We shall continue to call them gluons.

The use of the dispersion relation (1) in standard thermodynamic expres-
sions for the energy density and pressure leads, however, to the violation of
the basic thermodynamic identities. As it has been pointed out by Goren-
stein and Yang [6], a possible remedy for this situation is the introduction
of an additional mean field B, commonly depicted as a bag constant (see
also [7, 8]). As a matter of fact, B is not a constant but a function of M
and, therefore, it is also a function of T , B = B(M(T )). To avoid possible
confusion, in the following, we call B the bag pressure. We note that the
name of B originates from the renowned MIT bag model [9], see also [10–12].

An alternative description to that using formula (1) is the framework
based on the Gribov approach to the quantisation of the Yang–Mills theory
that leads to the following dispersion relation [13]:

E(k, γG) =

√
k2 +

γ4
G(T )

k2 . (2)

The Gribov parameter γG is, again, a function of the temperature T . At
high temperatures, γG is known to depend linearly on T . In the region just
above the critical temperature, γG may be treated as a constant [14, 15].
The use of Eq. (2) has turned out to be quite successful in qualitative de-
scription of thermodynamic properties of a purely gluonic system, such as
the temperature dependence of the energy density, ε, pressure, P , entropy
density, s, and the trace anomaly (interaction measure), I [14–17]. The
Gribov dispersion relation has been also used recently to address real-time
problems [18, 19].

Clearly, going beyond the approximations that lead to Eq. (2) is quite
complicated. Instead, in this work, we propose to fit the temperature de-
pendence of the Gribov parameter directly to the SU(3) gauge theory lattice
data [20]. In order to construct a thermodynamically consistent approach,
we follow Gorenstein and Yang, and introduce a temperature-dependent
bag pressure. We should emphasise that the lattice data [20] give a strong
evidence for the first order phase transition at the critical temperature
Tc = 260 MeV, expected for purely gluonic matter. Since our fits use smooth
functions, we are able only to determine an approximate behaviour of physi-
cal quantities in the phase transition region. The very character of the phase
transition, including its order, is not addressed in our considerations.
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Having established a thermodynamically consistent model based on
Eq. (2), we continue to realise our main aim, i.e., we construct a kinetic
framework allowing for medium-dependent Gribov parameter. In this way,
we generalise the results obtained before in Refs. [21, 22], where γG was
treated as a constant. In particular, we generalise the formulas for the shear
and bulk viscosity.

Determination of the kinetic coefficients for strongly interacting matter is
of large interest due to possible applications of such results in hydrodynamic
modelling of relativistic heavy-ion collisions [23–28]. For example, it was ar-
gued in [23] that a sharp rise of the bulk viscosity might cause cavitation
and splitting of the plasma into small clusters. The shear and bulk viscosi-
ties were calculated in the high-T regime using, for example, perturbation
theory [29–32], lattice simulations [33, 34], functional renormalization tech-
niques [35, 36], quasi-particle models [37–42], and a gas of hadrons [43, 44].
For conformal systems, a lower bound on the shear viscosity to entropy den-
sity ratio, η/s ≥ 1/(4π), was found [45]. However, breaking of conformal
invariance is necessary for the generation of bulk viscosity [46, 47], and a
few models have been suggested to reproduce lattice QCD features [48, 49].

We note that the bulk viscosity in a gluon system with dispersion re-
lation (2) was analysed before in a field theoretic approach of Ref. [50] in
the context of the old lattice data [51]. Our approach is more phenomeno-
logically oriented and we use the most recent lattice results for gluons [20].
We also obtain qualitatively and quantitatively different results — the en-
hancement of the bulk viscosity close to the critical temperature [52, 53].
Such enhancement is particularly interesting due to possible consequences
for heavy-ion collisions.

The paper is organised as follows: In Sec. 2, we discuss thermodynamic re-
lations from the point of view of thermodynamic consistency, and determine
the temperature dependence of the Gribov parameter and bag pressure. In
Sec. 3, we discuss symmetry constraints, the form of the energy-momentum
tensor, the kinetic equation in the relaxation time approximation, and the
calculation of the bulk and shear viscosities. We conclude in Sec. 4.

Three-vectors are denoted by the bold font, four-vectors are in standard
font, the dot denotes the scalar product and gµν = diag(+1,−1,−1,−1).
The four-vector defining the hydrodynamic flow is denoted by u. In the
local rest frame (LRF), uµ = (1, 0, 0, 0).

2. Thermodynamics

2.1. Pressure
The starting point for constructing a thermodynamically consistent ap-

proach is the definition of equilibrium pressure. The latter is divided into
the particle and mean-field parts, hence we write
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Peq = PGZ + Pmf , (3)

where

PGZ = − gT

(2π)3

∫
d3k ln

[
1− exp

(
−E(k, γG)

T

)]
(4)

and
Pmf = −B(γG) . (5)

The particle part, PGZ, describes the pressure of the equilibrium Gribov–
Zwanziger (GZ) plasma with the dispersion relation (2). The mean-field
part is expressed directly by the bag pressure. We note that the Gribov
parameter, γG, appearing in the two terms, depends implicitly on T . In
Eq. (4), g = 16 is the degeneracy factor connected with the internal degrees
of freedom (2 (spin) × 8 (colour)). By integrating by parts over momentum
in (4), we get

PGZ =
g

(2π)3

∫
d3k

k2

3E

(
1− γ4

G

k4

)
fGZ , (6)

where we have introduced the equilibrium (Bose–Einstein) distribution func-
tion of GZ gluons

fGZ =

[
exp

(
E(k, γG)

T

)
− 1

]−1

. (7)

2.2. Entropy density

The mean field does not contribute to the entropy density, hence we may
write

seq = sGZ . (8)

To obtain the particle entropy density, we use the Boltzmann definition

sGZ = − g

(2π)3

∫
d3k Φ[fGZ] , (9)

where the functional Φ has the form appropriate for bosons, namely

Φ[f ] = f ln f − (1 + f) ln(1 + f) . (10)

For f = fGZ, we find

Φ[fGZ] = ln

[
1− exp

(
−E
T

)]
− E

T
fGZ . (11)
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This gives the equilibrium entropy density in the form of

seq =
g

(2π)3

∫
d3k

E(k, γG)

T
fGZ

− g

(2π)3

∫
d3k ln

[
1− exp

(
−E(k, γG)

T

)]
(12)

which can be written also as

seq =
2g

3(2π)3

∫
d3k

E T

(
2|k|2 + γ4

G

|k|2

)
fGZ . (13)

The equality of Eqs. (12) and (13) can be verified most easily if one changes
to spherical coordinates in the second line of (12) and integrates by parts
over the magnitude of the three-momentum.

In the first line of (12), we find the energy density of the GZ plasma

εGZ =
g

(2π)3

∫
d3k E(k, γG) fGZ , (14)

whereas in the second line of (12), we find PGZ. Therefore, we arrive at the
thermodynamic identity

seq =
εGZ + PGZ

T
. (15)

Since the bag pressure does not appear in (15), this formula can be used to
find the temperature dependence of the Gribov parameter from the tempera-
ture dependence of the entropy density found in the lattice simulations. Sim-
ilar procedure has been applied before in the cases where the quasi-particle
approach with the dispersion relation (1) has been used in hydrodynamics,
for example, see [54, 55].

2.3. Energy density and thermodynamic identities

Given Peq, the formula for the energy density εeq is obtained from the
thermodynamic identities

εeq = Tseq − Peq , seq =
dPeq

dT
. (16)

In our case, using Eq. (3), we obtain

εeq = εGZ +B − T∆dγG

dT
(17)
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and

seq =
εGZ + PGZ

T
−∆dγG

dT
, (18)

where we have introduced the notation

∆ =
g

(2π)3

∫
d3k

2γ3
G

k2E(k, γG)
fGZ +

dB

dγG

. (19)

Comparing Eqs. (15) and (18), we conclude that the thermodynamic con-
sistency is maintained only if ∆ = 0 or, equivalently, if

g

(2π)3
dγG

dT

∫
d3k

2γ3
G

k2E(k, γG)
fGZ +

dB

dT
= 0 . (20)

If the temperature dependence of the Gribov parameter is determined by
the fits of the lattice entropy density, Eq. (20) can be used in the next step
to determine the temperature dependence of the bag pressure. Thus, in the
case of ∆ = 0, we obtain the compact expression for the energy density

εeq = εGZ + εmf , εmf = B(γG) . (21)

The expressions for the energy density and pressure can be used to find the
interaction measure (also known as the trace anomaly)

Ieq = εeq − 3Peq = εGZ − 3PGZ + 4B . (22)

2.4. Results for equilibrium

Our starting point is the analysis of the lattice results [20] for the tem-
perature dependence of the scaled trace anomaly Ieq(T )/T

4. In order to
guarantee that thermodynamic relations are satisfied exactly, we fit only
Ieq(T ). Subsequently, using the resulting fit function Ifit

eq(T ), the equilib-
rium pressure is calculated from Eq. (2.3) given in Ref. [20], namely

P fit
eq (T )

T 4
−
Peq(T0)

T 4
0

=

T∫
T0

dT ′

T ′
Ifit

eq (T ′)

T ′4
, (23)

where Peq(T0 = 0.7Tc) is read off again from Ref. [20]. We have checked
that the temperature dependence of pressure resulting from (23) agrees with
the lattice data at the level of 1–2%. Having Ifit

eq(T )/T
4 and P fit

eq (T )/T
4,

we calculate all remaining thermodynamic functions using relations (16)
and (22).
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Since seq is independent of the bag pressure, we use it to determine
γG(T ). Our functional fit to the lattice points describing entropy density vs.
temperature is shown in Fig. 1 (solid/red curve). The temperature depen-
dence of the ratio seq/T

3 shows a rapid increase in the region of the phase
transition. Such a behaviour is usually attributed to the increase of the
effective number of degrees of freedom in the system. Our model curve fol-
lows closely this trend. We note that for the pure Yang–Mills theory studied
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Fig. 1. (Colour on-line) Temperature dependence of the entropy density scaled
by T 3. The lattice data [20] (dots) is compared with our approximation (solid/red
line) based on Eq. (12) with the function γG(T ) shown in Fig. 2.
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Fig. 2. (Colour on-line) Temperature dependence of the Gribov parameter γG ob-
tained from the fit to the lattice results for the entropy density (solid/red line).
The dashed/green line representsM(T ) obtained in the similar way from the lattice
data but with the dispersion relation (1).
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in [20], one expects a first order phase transition, hence, the function seq/T
3

should be discontinuous at Tc. In our model calculation, we rely only on reg-
ular approximations to the lattice data and, consequently, do not reproduce
exactly the character of the phase transition.

The temperature-dependent Gribov parameter is shown in Fig. 2. The
presence of the phase transition is reflected by a sudden decrease of γG in
the region of T ≈ Tc. We note that for extremely high temperatures (not
shown in the figure), the ratio γG/T becomes (to a good approximation)
a constant. This means that the system may be treated approximately as
conformal in this region. We shall come back to this point discussing the
high temperature limit of the bulk viscosity in Sec. 3.4.

Given the function γG(T ), we find the temperature-dependent bag pres-
sureB(T ) from identity (20), which guarantees thermodynamic consistency1.
The function B(T ) is shown in Fig. 3. We have normalised B(T ) in such a
way that it is zero at T = 0. In the region of the phase transition, B(T ) has
a strong peak, while for large values of T , it becomes negative [56, 57]. We
checked that at asymptotically large T , the bag pressure vanishes. In Figs. 2
and 3, we show also the results obtained with the dispersion relation (1).
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Fig. 3. (Colour on-line) Temperature dependence of the bag pressure obtained from
condition (20) that guarantees thermodynamic consistency of our approach with
the boundary condition B(T = 0) = 0 (solid/red line). The dashed/green line gives
B(T ) obtained similarly with the dispersion relation (1).

Knowing the functions γG(T ) and B(T ), we are in a position to calculate
all other thermodynamic functions. In Figs. 4, 5 and 6, we show our results
for εeq(T )/T

4, Ieq(T )/T
4 and Peq(T )/T

4 (solid lines) compared to the lattice
data [20] (dots). In all the cases, we obtain a good agreement between our
fits and the lattice data, also in the region of the phase transition.

1 Knowing γG(T ), one may equivalently use Eq. (22).
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Fig. 4. (Colour on-line) Temperature dependence of the energy density scaled
by T 4. The lattice data [20] (dots) are compared with our approximation based on
Eq. (21) with the functions γG(T ) and B(T ) depicted in Figs. 2 and 3.
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Fig. 5. (Colour on-line) The same as Fig. 4 but for the case of interaction measure.
The lattice data are taken from [20].

Finally, in Fig. 7, we show the sound velocity characterising the system
(solid/red line) that has been obtained from the formula

c2
s =

dPeq

dεeq
. (24)

We note that the quantities Peq and εeq contain generally contributions from
the bag pressure. They disappear if B = const. The results for such a case,
with γG = 0.7 GeV, are also shown in the figure (dashed/blue line). We see
that the two results are consistent in the region above the phase transition,
where γG is approximately constant.
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Fig. 6. (Colour on-line) The same as Fig. 4 but for the case of pressure. The lattice
data are taken from [20].
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Fig. 7. (Colour on-line) Temperature dependence of the sound velocity squared for
the temperature-dependent (solid/red line) and constant (dashed/blue line) Gribov
parameter.

The temperature profile of the sound velocity has a dip typical for the
phase transition (soft point). For the first order phase transition, the sound
velocity drops exactly to zero. Since we use only approximations to the
lattice data, our result for c2

s is finite at T = Tc and reminds a rapid crossover
transition [58].
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3. Kinetics

3.1. Lorentz covariance and boost invariance

Having discussed the equilibrium properties of our system, we turn to the
study of kinetic properties of the GZ plasma with the temperature-dependent
γG and B. To calculate the bulk and shear viscosities, we consider a boost-
invariant and transversally homogeneous system [59]. These two properties
facilitate our considerations — they allow us to formulate a consistent (albeit
simple) kinetic model within the relaxation time approximation used for the
collision term. We note that although our treatment employs the Bjorken
scenario, the final results for the kinetic coefficients are independent of the
expansion model, as they depend only on local thermodynamic parameters.

The boost invariance of our approach should be discussed in the context
of the Lorentz invariance. In fact, the latter is explicitly broken by Eq. (2)
that has been derived in the Coulomb gauge. A solution to this problem has
been proposed in Refs. [21, 22]. Since the Coulomb gauge as well as the value
of the Gribov parameter are both determined by the procedures defined in
the local rest frame of the fluid element, the energy of a gluon E (denoting
always the energy determined in LRF) should be treated as a scalar function
of three-momentum. The details of this procedure are discussed in greater
detail in Ref. [22]. Here, we only explain our notation.

The longitudinal momentum of a particle is denoted by k‖, the magnitude

of the transverse momentum is k⊥ ≡
√
k2
x + k2

y, and k0 is the magnitude

of the three-vector k ≡ (kx, ky, k‖), namely, k0 ≡ |k|. Thus, we use the
four-vector kµ = (|k|, kx, ky, k‖) which has standard Lorentz transformation
properties with k · k = k2 = 0. The function E(k, γG) defines the energy
of the gluon with three-momentum k in LRF. If the latter has the four-
velocity u, the energy of a gluon can be written covariantly as

E(k · u, γG) =

√
(k · u)2 + γ4

G

(k · u)2
. (25)

For one-dimensional, boost-invariant and transversally homogeneous sys-
tems, one may introduce the boost-invariant variables: τ =

√
t2 − z2, v =

k0t− k‖z = |k|t− k‖z, w = k‖t− k0z = k‖t− |k|z [60, 61]. Hence, we find

k · u =
v

τ
=

√
w2

τ2
+ k2
⊥ (26)

and

E(τ, w, k⊥) =

√
w2

τ2
+ k2
⊥ +

γ4
G

w2

τ2
+ k2
⊥
. (27)
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The phase-space distribution function is a Lorentz scalar. This means that in
our case, the phase-space distribution function depends only on τ , w, and k⊥

f(x, p) = f(τ, w, k⊥) . (28)

Finally, we note that the Lorentz invariant measure in the momentum space
expressed in the new variables is dw d2k⊥/τ .

3.2. Energy-momentum tensor and energy-momentum conservation law

As long as the system is in local equilibrium, its energy-momentum tensor
has the perfect-fluid form

Tµνeq = (εeq + Peq)u
µuν − Peqg

µν , (29)

where the flow vector has the form uµ = (t, 0, 0, z)/τ . For boost-invariant
systems which are additionally homogeneous in the transverse plane, the
general form of the energy-momentum tensor that holds also out of equilib-
rium is

Tµν =
(
εtot + P tot

⊥
)
uµuν − P tot

⊥ gµν +
(
P tot
‖ − P

tot
⊥

)
zµzν . (30)

Here, εtot is the total energy density, P tot
⊥ is the total transverse pressure,

P tot
‖ is the total longitudinal pressure, and zµ = (z, 0, 0, t)/τ . We note that

the structure of Eq. (30) follows directly from definitions of the components
of Tµν . The total quantities include the particle and the field parts alto-
gether, namely, we have

εtot = ε+B , P tot
‖ = P‖ −B , P tot

⊥ = P⊥ −B , (31)

where [62]

ε = g

∫
dw d2k⊥
(2π)3 τ

E(τ, w, k⊥) f , (32)

P‖ = g

∫
dw d2k⊥
(2π)3 τ

w2

[
1− γ4G

(w2/τ2+k2⊥)
2

]
τ2E (τ, w, k⊥)

f , (33)

P⊥ = g

∫
dw d2k⊥
(2π)3 τ

k2
⊥

[
1− γ4G

(w2/τ2+k2⊥)
2

]
2E (τ, w, k⊥)

f . (34)

The standard pressure is then defined as P = (2P⊥ + P‖)/3.
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In our case, the energy-momentum conservation law, ∂µTµν = 0, simpli-
fies to a single equation

dεtot

dτ
= −

εtot + P tot
‖

τ
. (35)

Taking into account (31), this is equivalent to

dε

dτ
+

dB

dτ
= −

ε+ P‖

τ
. (36)

Using (27), (32) and (33), one obtains from (36)

dB

dτ
+ g

∫
dw d2k⊥
(2π)3τ

2γ3
G(

w2

τ2
+ k2
⊥

)
E (τ, w, k⊥)

dγG

dτ
f

+ g

∫
dw d2k⊥
(2π)3τ

E (τ, w, k⊥)
∂f

∂τ
= 0 . (37)

Before we analyse non-equilibrium features of Eq. (37), it is interesting to
discuss the case of local equilibrium. In this case, Eq. (35) can be written as

dεeq

dτ
= −εeq + Peq

τ
. (38)

Using thermodynamic identities dPeq = seqdT and dεeq = Tdseq, we obtain
from (38) the Bjorken scaling solution for the entropy density [59]

seq(τ) =
τ0 seq(τ0)

τ
. (39)

This allows us to express the sound velocity of system (24) by the formula

c2
s =

dPeq

dεeq
=

dPeq

dT
dεeq
dT

=
seq

T
dseq
dT

= −d lnT

d ln τ
. (40)

3.3. Mean field and kinetic equations

If considered in equilibrium, the first two terms of Eq. (37) agree with
Eq. (20). This suggests that they may be treated as a non-equilibrium
extension of Eq. (20). Therefore, as the first dynamic equation for a non-
equilibrium system we take2

g

∫
dw d2k⊥
(2π)3τ

2γ3
G(

w2

τ2
+ k2
⊥

)
E (τ, w, k⊥)

dγG

dτ
f +

dB

dτ
= 0 . (41)

2 We note that this is a heuristic argument, which suggests subsequently the form of
Eqs. (42) and (43). Alternatively, we may postulate first the relaxation time equations
(42) and (43), as their form is frequently used, and conclude that Eq. (41) should be
satisfied.
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On the other hand, from the third term of Eq. (37), we conclude that the dis-
tribution function may satisfy the standard relaxation time approximation
equation of the form of [62–66]

∂f(τ, w, k⊥)

∂τ
=
fGZ(τ, w, k⊥)− f(τ, w, k⊥)

τGZ(τ)
, (42)

where∫
dw d2k⊥

τ
E(τ, w, k⊥) fGZ(τ, w, k⊥)=

∫
dw d2k⊥

τ
E(τ, w, k⊥) f(τ, w, k⊥) .

(43)

The quantity τGZ in (42) is the relaxation time, which specifies the timescale
at which the distribution function f approaches the equilibrium form fGZ.
The present approach allows for a τ -dependent relaxation time, however, τGZ

should be momentum-independent. In Eq. (43), we recognize the Landau
matching condition for the energy. We note that Eq. (42) has a formal
solution [62]

f (τ, w, k⊥) = f0 (w, k⊥)D (τ, τ0)+

τ∫
τ0

dτ ′

τGZ (τ ′)
D
(
τ, τ ′

)
fGZ

(
τ ′, w, k⊥

)
(44)

with the damping function D(τ2, τ1) defined as

D(τ2, τ1) = exp

− τ2∫
τ1

dτ ′′τ−1
GZ (τ

′′)

 . (45)

Solution (44) can be used to analyse the system’s real off-equilibrium dynam-
ics. However, in this work, we concentrate on the kinetic coefficients solely,
hence, it is sufficient to study Eq. (42) in the linear response approximation.
The latter applies for small deviations from local equilibrium.

3.4. Bulk and shear viscosities

In order to determine the viscous corrections, we seek the solution of the
kinetic equation (42) in the form of

f ≈ fGZ + τGZ δf + · · · (46)
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which gives

δf = −d fGZ

dτ
= − E

Tτ

[
w2

E2τ2

(
1− γ4

G(
w2/τ2 + k2

⊥
)2
)

+
τdT

Tdτ

(
1− 2γ3

GT(
w2/τ2 + k2

⊥
)
E2

dγG

dT

)]
fGZ (1 + fGZ) . (47)

From the definition of the bulk viscosity ζ = (PGZ−P )/∂µuµ [67], using
Eq. (47) and the Landau matching condition (43) in the linearised form∫

dw d2k⊥E δf = 0 , (48)

we find

ζ = −2gγ4
GτGZ

3T (2π)3

∫
dw d2k⊥

τ
(
w2/τ2 + k2

⊥
) [ w2

E2τ2

(
1− γ4

G(
w2/τ2 + k2

⊥
)2
)

− c2
s (T )

(
1− 2γ3

GT(
w2/τ2 + k2

⊥
)
E2

dγG

dT

)]
fGZ (1 + fGZ) . (49)

Here, we have used the Bjorken, leading-order solution and replaced the
term −τdT/(Tdτ) by the sound velocity squared, according to Eq. (40).
Changing integration variables: w/τ = k‖, k‖ = k cos θ, k⊥ = k sin θ, and
y = k/γG, and integrating over θ from 0 to π, Eq. (49) can be cast into the
form of

ζ =
gγ5

GτGZ

3π2T

∞∫
0

dy

[
c2

s

(
1− 2

y4 + 1

d ln γG

d lnT

)
− 1

3

y4 − 1

y4 + 1

]
fGZ (1 + fGZ) , (50)

with the distribution function fGZ = [exp(γG

√
y2 + y−2/T )− 1]−1. We note

that for γG = const, Eqs. (49) and (50) agree with the formulas derived in
Refs. [21, 22].

It is interesting also to compare (50) with the expression for the bulk
viscosity which is valid for the case where the dispersion relation (1) is used.
Following [37], we find

ζM =
gM5τrel

6π2T

∞∫
0

dy y2

[
c2

s

(
1− 1

y2 + 1

d lnM

d lnT

)
− 1

3

y2

y2 + 1

]
f (1 + f) ,

(51)

where τrel is the appropriate relaxation time and f is the equilibrium distri-

bution of the form of f =
[
exp(M

√
y2 + 1/T )− 1

]−1
.
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Our results showing temperature dependence of the bulk viscosity (50)
are presented in Fig. 8 (solid/red line). The most prominent feature of
this behaviour is a sharp peak appearing in the region of the phase transi-
tion. The results obtained with the constant value γG = 0.7 GeV [21, 22]
(dashed/blue line) agree with the present calculation in the region above
the phase transition but they miss the peak structure. The latter appears
in the calculation using the dispersion relation (1) but its height and width
are significantly smaller.

Fig. 8. (Colour on-line) Temperature dependence of the bulk viscosity obtained
from Eq. (50) with the Gribov parameter fitted to the lattice data (solid/red line)
and with the constant value γG = 0.7 GeV (long-dashed/blue line). The short-
dashed/green line shows, for comparison, the bulk viscosity obtained from Eq. (51)
with the effective mass M(T ) fitted to the lattice results.

It is interesting to observe that in the high temperature limit, where
the Gribov parameter becomes proportional to temperature, γG = αT with
α = const, the bulk viscosity (50) vanishes. Similar property has the bulk
viscosity (51) if M/T = const.

The same method may be used to calculate the shear viscosity from
the relation η = 1/2(P⊥ − P‖)/∂µuµ [67]. In this case, we may keep only
anisotropic parts of δf , which leads to the expression

η=
gτGZ

2T

∫
dw d2k⊥
(2π)3τ

(
w2

τ2
−
k2
⊥
2

)(
1− γ4

G(
w2/τ2+k2

⊥
)2
)2

w2

E2τ2
fGZ (1+fGZ) ,

(52)
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or, after changing the variables, to

η =
gγ5

GτGZ

30π2T

∞∫
0

dy

(
y4 − 1

)2
y4 + 1

fGZ (1 + fGZ) . (53)

The corresponding formula for the dispersion relation (1) is [37]

ηM =
g0M

5

30π2

τrel

T

∞∫
0

dy
y6

y2 + 1
f(1 + f) , (54)

where, again, f =
[
exp(M

√
y2 + 1/T )− 1

]−1
. The results showing the

temperature dependence of the shear viscosity are shown in Fig. 9. For
three considered cases, we find a similar monotonic behaviour. We note
that we do not obtain the increase of the ratio η/s for T → 0. This feature
is attributed to the chiral properties of pions at low temperatures [68], which
are missing in our approach.

Fig. 9. (Colour on-line) Temperature dependence of the shear viscosity obtained
from Eq. (53) with the Gribov parameter fitted to the lattice data (solid/red line)
and with the constant value γG = 0.7 GeV (long-dashed/blue line). The short-
dashed/green line shows, for comparison, the shear viscosity obtained from Eq. (54)
with the effective mass M(T ) fitted from the lattice results.

4. Conclusions

In this work, we have calculated the bulk and shear viscosity of the
Gribov–Zwanziger plasma in the case where the Gribov parameter depends
on temperature. In this way, we have generalised the results obtained earlier
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in Refs. [21, 22]. The temperature dependence of the Gribov parameter has
been determined from the pure glue lattice data on the entropy density.
The overall thermodynamic consistency has been achieved by the use of the
temperature-dependent bag pressure.

To calculate the kinetic coefficients, we have introduced the kinetic model
based on the relaxation time approximation. We have shown that this ap-
proach is consistent with the basic energy-momentum conservation law. The
final results for the viscosities are proportional to the relaxation time, how-
ever, otherwise, they depend only on the temperature of the system, in
particular, via γG(T ) and B(T ). The evidence for a peaked structure of the
bulk viscosity in the phase transition region has been found. Compared to
more standard calculations with a temperature-dependent mass, the use of
the Gribov dispersion relation yields a much broader enhancement.
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