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The liquid-gas phase transition of asymmetric nuclear matter is studied
within the relativistic mean-field model with nonlinear isoscalar–isovector
coupling. The density dependence of symmetry energy constrained from
the measured neutron skin thickness of finite nuclei has also been used
in the investigation. It is found that several features of liquid-gas phase
transition, such as, liquid-gas coexistence region, critical values of pressure
and isospin asymmetry and maximal isospin asymmetry increase with the
softness of density dependence of symmetry energy. It is also found that
the critical temperature is higher for softer symmetry energy.
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1. Introduction

The study of nuclear matter under extreme conditions such as large
isospin asymmetry and high temperature have been of great interest for a
number of years [1–9]. The intermediate energy heavy-ion collisions using
neutron-rich radioactive beams indicate the features of theoretically pre-
dicted liquid-gas phase (LGP), in which the hot and compressed nucleus
expands and breaks into several mass fragments (high-density liquid phase)
and nucleons and light particles (low-density gas phase).

The earlier theoretical studies related to the thermodynamic properties
of LGP transition were focused on symmetric nuclear matter, which is a
one-component system [10–12]. On the other hand, the asymmetric nuclear
matter is a two-component system, characterized by the baryon number and
the third component of isospin, I3. One of the main ingredients to study
LGP transition in asymmetric nuclear matter is the density dependence
of nuclear symmetry energy, Esym(ρ). Unfortunately, patterns of behavior
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of symmetry energy predicted by various models are extremely diverse [13]
except at nuclear saturation density, ρ0 ≈ 0.16 fm−3, where, Esym(ρ0, T = 0)
= 32± 4 MeV, which has been well-constrained.

Recently, some progress has been made to constrain symmetry energy
around normal matter density from the experimental isoscaling data of in-
termediate heavy-ion collisions [14], isospin diffusion data [15, 16] and from
the study of neutron skin thickness of several nuclei [17, 18]. Very recently,
neutron skin data for 208Pb from parity-violation experiment has been re-
ported [19]. It is, therefore, very important to study the LGP transition
in hot asymmetric nuclear matter with the equation of state (EOS) that
has been constrained by these new experimental findings. Such theoreti-
cal investigations are expected to provide a basic understanding for future
experiments with more neutron-rich radioactive ion beams.

In this paper, our aim is to understand the effect of well-constrained
symmetry energy on the thermodynamic properties of LGP transition of hot
asymmetric nuclear matter within the framework of the relativistic mean-
field (RMF) model [20–22].

The paper is organized as follows: the RMF model with isoscalar–
isovector coupling (Λv) has been introduced and the basic features of LGP
transition have been described in Section 2. The numerical results for hot
asymmetric nuclear have been presented and discussed in Section 3. The
summary and conclusions are presented in the last section.

2. Formulation

The interaction Lagrangian density in the nonlinear RMF model is given
by [18, 23]

L = ψ̄
[
gsφ−

(
gvVµ +

gρ
2
τ · bµ +

e

2
(1 + τ3)Aµ

)
γµ
]
ψ − κ

3!
(gsφ)3

− λ
4!

(gsφ)4 +
ζ

4!
g4v (VµV

µ)2 + Λv
(
g2ρbµ · bµ

) (
g2vVµV

µ
)
. (1)

Here, ψ is the isospin doublet nucleon field, interacting by the exchange of
isoscalar–scalar σ (φ), isoscalar–vector ω (V µ), isovector–vector ρ (bµ), and
the photon field (Aµ), respectively. The EOS of symmetric nuclear around
the saturation density ρ0 softens due to the nonlinear couplings κ and λ
of σ meson, while the high density part is softens by the self-interaction
coupling ζ of the ω meson.

The symmetry energy for Eq. (1) is given by

Esym(ρ) =
k2F

6E∗
F

+
g2ρ

12π2
k3F
m∗2
ρ

, (2)
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where E∗
F =

√
k2F +m∗2, kF and m∗ = m − gsφ0 are the Fermi energy,

Fermi momentum and effective mass of the nucleon, respectively. The effec-
tive ρ meson mass is m∗2

ρ = m2
ρ + 2g2ρ(Λvg

2
vV

2
0 ). The Λv coupling modifies

the density dependent of symmetry energy by m∗2
ρ without affecting the

saturation properties.
In the present work, we use the Lagrangian parameter set NL3* [24]

with different Λv couplings. The original NL3* parameter set was obtained
by fitting the model parameters to certain ground state properties of the
finite nuclei [24]. There, the Λv and ζ couplings were taken to be zero. For
our present calculations, we use the extended NL3* model [18, 23, 25] with
isovector coupling Λv, which is then varied along with gρ to generate various
Esym(ρ).

Since only the average value of Esym(ρ, T = 0) is constrained by binding
energy at the full saturation density which corresponds to kF = 1.30 fm−1

[25, 26], we have obtained all the combinations of Λv and gρ by adjusting to
a constant Esym(ρ̄, T = 0) = 26.345 MeV for NL3*, at an average density
ρ̄ which corresponds to kF = 1.15 fm−1. In this range of Λv, the values
of the binding energy per particle for 208Pb are found to be within the
uncertainty of the measured value of B/A = 7.87 ± 0.02 MeV, and the
proton density distribution is also practically unaltered. We then use Λv =
0.00 and 0.03 to explore the effect of Esym(ρ) on the LGP transition in hot
asymmetric nuclear matter. We choose these two particular values of Λv
because the resulting values of the neutron skin of 208Pb turn out to be
0.29 fm and 0.20 fm respectively, which are well within the limits of the
recently measured neutron skin data [19]. Further, for Λv = 0.00 and 0.03,
the resulting symmetry energies, their slope parameter L and Kasym are in a
reasonable agreement with the other experimental results, such as, neutron
skins of several nuclei as well as the isoscaling and isospin diffusion data
[15–17]. The values of Λv and gρ couplings along with the slope parameter L
and Kasym are listed in Table I.

TABLE I

The isoscalar–isovector couplings Λv and g2ρ along with slope parameter L and
Kasym ≈ Ksym − 6L for NL3*.

Λv g2ρ L [MeV] Kasym [MeV]

0.00 83.72 122.64 −630.24
0.01 96.06 88.84 −586.45
0.02 112.69 67.82 −461.04
0.03 136.26 54.29 −325.94
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The energy density E which is obtained by the thermodynamic poten-
tial Ω [3] at finite temperature and density is given by

E =
2

(2π)3

∑
q=n,p

∫
d3kE∗(k)

(
[nq(k)]+ + [nq(k)]−

)
+
m2
sφ

2

2
+
κ

3!
(gsφ)3

+
λ

4!
(gsφ)4 +

m2
vV

2
0

2
+
ζ

8
(gvV0)

4 +
m2
ρb

2
0

2
+ 3Λv (gvV0)

2 (gρb0)
2 . (3)

The distribution function for nucleons and anti-nucleons (denoted by the
subscript ±), as usual [3, 27], is taken to be

[nq(k)]± =
1

exp [(E∗(k)∓νq)/T ] + 1
, (q = n, p) (4)

where, E∗(k) =
√
k2 +m∗2 and νq = µq − gvV0 ± gρb0/2 are the effective

energy and effective chemical potential of the nucleons, respectively. The
chemical potentials can be determined from the conserved baryon and isospin
densities

ρ =
2

(2π)3

∫
d3k [Gp(k) +Gn(k)] , (5)

ρ3 =
2

(2π)3

∫
d3k [Gp(k)−Gn(k)] , (6)

where Gq(k) = [nq(k)]+ − [nq(k)]−, (q = n, p).
The asymmetric nuclear matter is stable against LGP if its free energy F

is lower than the coexisting liquid (L) and gas (G) phases i.e., F (T, ρ) <
(1−χ)FL(T, ρL)+χFG(T, ρG) with the density ρ = (1−χ)ρL +χρG, where
0 < χ < 1 and χ = V G/V is the volume fraction of the total volume
occupied by the gas phase. The stability condition implies the following
inequalities [3]:

ρ

(
∂P

∂ρ

)
T,α

> 0 , (7)(
∂µp
∂α

)
T,P

< 0 or

(
∂µn
∂α

)
T,P

> 0 , (8)

where α = (ρn − ρp) /ρ is the isospin asymmetry parameter.
Equation (7) indicates mechanical stability which means that at posi-

tive isothermal compressibility, a system remains stable at all the densities.
Equation (8) stems from chemical instability which shows that some energy
is required to change the concentration in a stable system while maintaining
pressure and temperature fixed. A system with two phases is energetically
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favorable, if any one of these conditions i.e., Eqs. (7), (8) gets violated. The
two phase coexistence is governed by Gibbs’s criteria

µq
(
T, ρL

)
= µq

(
T, ρG

)
(q = n, p) , (9)

P
(
T, ρL

)
= P

(
T, ρG

)
. (10)

3. Results and discussion

The density dependence of symmetry energy, Esym(ρ, T = 0), at different
values of isoscalar–isovector couplings Λv for the parameter set NL3* has
been presented in Fig. 1. It is found that a stiffer symmetry energy at
supranormal densities (ρ ≥ ρ0) leads to a softer energy dependence at sub-
saturation densities. At Λv = 0.00, the density dependence of symmetry
energy is almost linear with increasing density. On the other hand, for
the finite values of Λv coupling, the symmetry energy increases faster up
to 2ρ0 and then it increases slowly (almost saturated) with increasing ρ.
This behavior of symmetry energy with increasing ρ can be understood
from Eq. (2), since for Λv = 0.00, Esym(ρ) ∝ k3F ∝ ρ. Similarly, for the
finite values of Λv coupling, the repulsive potential Uv = gvV0 contributes
to m∗

ρ and this makes symmetry energy softer at high densities. In the inset
of Fig. 1, we have shown the density dependence of symmetry energy for
Λv = 0.00 and 0.03 up to the saturation density, ρ0.
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Fig. 1. Density dependence of symmetry energy for NL3* with different couplings
of Λv. The inset shows the variation for Λv = 0.00 and 0.03 respectively for NL3*
up to the nuclear saturation density.
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The pressure as a function of ρ with different values of α at fixed tem-
perature T = 10 MeV in the original NL3* model (Λv = 0.00) and NL3*
with Λv = 0.03 has been presented in the upper and the lower panel of
Fig. 2, respectively. As seen from Fig. 2, for both Λv = 0.00 and 0.03, the
pressure (dotted curves) decreases with increasing ρ below a critical value of
α which indicates a negative incompressibility and, thereby, a mechanically
unstable system. The stable LGP (two phase) configuration is obtained by
the Maxwell construction (solid lines) at each value of ρ. This feature is
analogous to the intermediate energy heavy-ion collisions [28, 29] when the
hot matter in liquid phase (high density) expands it and enters in the coexis-
tence LGP where the pressure decreases for the two-component asymmetric
matter at a fixed α 6= 0 and, finally, the system leaves the coexistence re-
gion and vaporizes into the gas (low density) phase. For symmetric nuclear
matter (α = 0), the pressure remains constant at all the densities. As far
as the effect of symmetry energy on the isotherms is concerned, it is found
that NL3* with Λv = 0.03 enforces the onset of pure liquid phase to a higher
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Fig. 2. The pressure of asymmetric nuclear matter for various isospin asymmetry
parameter α with respect to density ρ at temperature T = 10 MeV for NL3* with
Λv = 0.00 and 0.03 are shown in the upper and the lower panel, respectively. The
solid curves refer to the stable matter, while dotted curves refer to the unstable
single phase matter.
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density compared to the original NL3* (Λv = 0.00). This suggests a wider
coexistence region and higher value of critical pressure Pc (above which the
mixed LGP vanishes) for NL3* with Λv = 0.03 for each α. The detailed
discussion is presented below.

For NL3* with Λv = 0.00 and 0.03, the chemical potentials for neutrons
and protons as a function of α at a fixed temperature T = 10 MeV and
pressure P = 0.11 MeV/fm−3 are shown in Fig. 3. The bare nucleon mass
has been subtracted from the chemical potentials. For fixed pressure and Λv,
the solutions of Gibbs conditions (Eqs. (9) and (10)) require equal pressures
and chemical potentials for two phases with different concentrations. Such
solutions can be found by means of the geometrical construction as shown
in Fig. 3. For both the values of Λv, two different values of α define high-
density liquid phase boundary with small α = α1(T, P ) and low-density gas
phase boundary with large α = α2(T, P ) respectively.
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Fig. 3. The chemical potential isobars as a function of isospin asymmetry parameter
α with Λv = 0.00 and 0.03 for NL3* at fixed temperature T = 10 MeV are shown
in the upper and the lower panel, respectively.
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In Fig. 3, we plot the chemical potentials for neutrons and protons as a
function of α for two values of pressure P = 0.11 MeV/fm−3 and the critical
pressure Pc, respectively. We find that for P = 0.11 MeV/fm−3, there is
not much variation in phase boundaries α = α1(T, P ) and α = α2(T, P ) for
Λv = 0.00 and 0.03. On the other hand, the critical value of Pc is different
for Λv = 0.00 and 0.03. This observation indicates that the symmetry energy
dependence of Λv in NL3* leads to different phase boundaries α = α1(T, P )
and α = α2(T, P ) between these two values of pressure for a given Λv.
Hence, it is expected to predict different thermodynamic properties for LGP
transition for different values of Λv.

The critical pressure Pc for LGP is the pressure beyond which the mat-
ter is stable, but below which second inequality (8) gets violated. The crit-
ical pressure Pc is determined by (∂µ/∂α)T,Pc

=
(
∂2µ/∂α2

)
T,Pc

= 0. In
Fig. 3, we also show the chemical potential isobars at critical pressure (light
gray/green solid lines, color online). The rectangle from Gibbs condition
then collapses into a vertical line at α ≡ αc. The values of Pc and αc

at a given temperature define the critical point which refers to the upper
boundary of instability with respect to the pressure variation. The criti-
cal points Pc, αc at T = 10 MeV for NL3* with Λv = 0.00 and 0.03 are
(0.2107, 0.6354) and (0.3792, 0.7503), respectively. We find that an overall
softer symmetry energy (larger Λv) which corresponds to the stiffer behavior
at sub-saturation densities gives systematically larger critical pressure and
an enhanced asymmetry in the system.

All the pairs of solutions of Gibbs conditions, α1(T, P ) and α2(T, P )
describe a binodal surface which is shown in Fig. 4. The binodal surface is
divided into two branches by the critical point (CP) and a point of equal
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concentration (EC). The EC corresponds to symmetric nuclear matter which
is independent of Λv. One branch corresponds to the high-density (liquid)
phase and the other one corresponds to low-density (gas) phase, respectively.
The liquid phase is less asymmetric compared to the gas phase. It is found
that the critical point Pc, αc depends on the density dependence of symmetry
energy which corresponds to different values of Λv.

In Fig. 4, we also indicate the maximal isospin asymmetry (MA), αMA

which means the minimal proton fraction of the system. Thus, more neutron-
rich matter when compressed/expanded at fixed α will never encounter a co-
existence phase. It is also found that αMA is quite sensitive to the symmetry
energy.

It is quite evident that the studies such as the present work have a
strong influence on experimentally observed isospin distillation phenomena
[30]. In isospin distillation phenomena, gas is more neutron-rich compared
to the more symmetric liquid phase and the magnitude of isospin distillation
is more sensitive to the symmetry energy used. However, it is difficult to
access it experimentally.

In Fig. 5, we show the critical temperature Tc as a function of α for NL3*
with Λv = 0.00 and 0.03. The critical temperature Tc of LGP transition for
symmetric nuclear matter (α = 0) is 14.4 MeV. It has been found that Tc
decreases rapidly for αc ≥ 0.4. The figure also reveals that for larger Λv
(softer density dependence of symmetry energy), the coexisting LGP have
larger values of Tc.
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Fig. 5. The critical temperature Tc as a function of isospin asymmetry parameter
α for NL3* with Λv = 0.00 and 0.03 are shown.
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4. Summary and conclusions

In summary, we investigate the effect of isoscalar–isovector interaction
on LGP transition in hot asymmetric nuclear matter. For this purpose,
the NL3* [24] parameter set with Λv = 0.00 and 0.03 has been used. The
symmetry energy Esym at zero temperature is well-constrained by the ex-
perimental isoscaling data of intermediate heavy-ion collisions [14], isospin
diffusion data [15, 16], and the neutron skin thickness of several nuclei [17, 18]
and also the recently measured neutron skin for 208Pb from parity-violation
experiment [19]. We found a considerable sensitivity of symmetry energy
on the basic features of LGP. Thus, our present investigation indicates that
the precise information on the density dependence of symmetry energy may
be obtained from the analysis of observables related to LGP transition in
future experiments with exotic beams.
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