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The two-dimensional BTWmodel of SOC, with probabilistically nonuni-
form distribution of particles among the (nearest) neighbouring sites, is
studied by the computer simulation. When the value of height variable
of a particular site reaches the critical value (zc = 4), the value of height
variable of that site is reduced by four units by distributing four particles
among the four nearest neighbouring sites. In this paper, it is considered
that two particles are distributed equally among the two nearest neighbour-
ing sites along x-axis. However, the distribution of other two particles along
y-axis, is probabilistically nonuniform. The variation of spatial average of
the height variable with time is studied. In the SOC state, the distribu-
tions of avalanche sizes and durations are obtained. The total number of
topplings occurred during the stipulated time of evolution is also calculated.
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1. Introduction

There exists some extended driven systems in nature, such as forest
fire, earthquake, growth of sandpile, which can be explained by using self-
organised criticality (SOC). This phenomena of SOC is characterised by a
spontaneous evolution into a steady state which shows long-range spatial
and temporal correlations. The concept of SOC was introduced by Bak,
Tang and Wiesenfeld in terms of a simple cellular automata model [1, 2].
The steady state dynamics of the model shows a power-law behaviour in the
probability distributions for the occurrence of the relaxation (avalanches)
clusters of a certain size, area, lifetime, etc. The BTW model has been
solved exactly using the commutative property of the particle addition op-
erator [3]. Several properties of this critical state, e.g., entropy, height cor-
relation, height probabilities, cluster statistics, etc. have been studied in
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Refs. [4–7]. An extensive numerical efforts have been also performed to
study the properties of the model in the SOC state and to estimate various
critical exponents [8–14]. The avalanche exponents were estimated using
the renormalization scheme [15, 16]. The BTW model in a dilute lattice has
been also studied recently [17, 18].

The BTW model is a so-called ‘sandpile’ model with deterministic and
isotropic toppling rule. Later the sandpile model with different modifica-
tions have been studied. Haw and Kardar determined the critical expo-
nents of the anisotropic sandpile model using dynamical renormalisation
method [19]. The effect of anisotropy in a continuous version of sandpile
model (Zhang model) has been also studied and critical exponents have
been calculated [20, 21]. In [22], the authors have shown both by theo-
retical and numerical simulation that continuous Abelian sandpile model
with anisotropies in toppling rule belongs to the same universality class of
continuous sandpile model.

Dhar and Ramaswamy obtained an exact solution of the Abelian deter-
ministic directed sandpile model [23] which has been studied in [24] both
with deterministic and stochastic toppling rules.

After the introduction of stochastic sandpile model by Manna [25], var-
ious studies have been performed on stochastic sandpile model [10, 26, 27].
The critical behaviour of sandpile model with stochasticity in toppling is
different from that of deterministic toppling rules [28]. Recently, the contin-
uous transformation of BTW model to Manna model has been studied [29]
by introducing an ‘intermediate model’.

In this paper, we have studied the BTW model with probabilistically
anisotropic toppling rule. Here, we have considered that two particles are
distributed uniformly along one direction (say along x-axis) i.e., one particle
moves along positive x-axis and the other moves along negative x-axis from
the unstable lattice site. However, along other (y) direction, there is a prob-
ability (Pr) that the remaining two particles are distributed nonuniformly
(i.e., both particles will go towards positive y-axis with probability Pr). Con-
sequently, two particles are distributed uniformy with probability (1− Pr),
restoring the original BTW model.

In the original BTW model (with uniform distribution of particles after
topplings), in two dimensions, the distribution may be visualized as the sand-
pile formed on a horizontal plane. Whereas a probabilistically nonuniform
distribution of particles (considered in the present study) is a manifestation
of formation of sandpile on an inclined plane.

In this work, we have first studied the time evolution of the spatial aver-
age of the height variable, z̄, for a particular probability, Pr, of nonuniform
distribution of particles along y-axis. The distribution of size and duration
of the avalanches in the critical state has also been obtained. We have also
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studied the effect of probabilistically nonuniform distribution of particles
along y-axis through the spatial varaition of the total number of topplings,
Nt(i, j), occurred at a particular lattice site (i, j), during the stipulated time
of evolution of the system.

This paper is organised as follows. In Section 2, the model and simulation
is discussed. In Section 3, the results are described. The paper ends with
the conclusion, in Section 4.

2. The model and simulation

The BTW model is a lattice automata model of sandpile growth which
evolves spontaneously into a critical state. We consider a two-dimensional
square lattice of size L× L. Each site (i, j) of the lattice is associated with
a variable (so-called height) z(i, j) which can take positive integer values
varying from 0 to zc. In every time step, one particle is added to a randomly
selected site which increases the value of the height of that site, according to

z(i, j) = z(i, j) + 1 . (1)

If, at any site, the height variable exceeds a critical value zc (i.e., if z(i, j) ≥
zc) then that site becomes unstable and it relaxes by a toppling. When an
unstable site topples, the value of the height variable of that site is reduced
by 4 units and that of each of the four of its neighbouring sites increased by
unity (local conservation), i.e.,

z(i, j) = z(i, j)− 4 , (2)

z(i± 1, j) = z(i± 1, j) + 1 and z(i, j ± 1) = z(i, j ± 1) + 1 (3)

for z(i, j) ≥ zc. Each boundary site is attached to an additional site which
acts as a sink. We use here the open boundary conditions so that the system
can dissipate through the boundary. In our simulation, we have taken zc = 4.

In the original BTW model, when the unstable site topples, four parti-
cles from the unstable site are distributed uniformly among its four nearest
neighbours. In this paper, we consider the distribution of two particles from
the unstable site equally among the two nearest neighbouring sites along the
directions of x-axis. But in the case of distribution of particles along y-axis,
the distribution is probabilistically nonuniform. Thus, there is a probability
(Pr) that two particles from the unstable site will move to the nearest neigh-
bouring site along the positive direction of y-axis, i.e., from (i, j) to (i, j+1).
With probability (1 − Pr), two particles will be distributed equally among
the two nearest neighbouring sites along both the directions of y-axis. Thus,
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in this work, as the unstable site topples, the particles from the unstable site
will move towards its nearest neighbouring sites as follows:

z(i, j) = z(i, j)− 4 , (4)
z(i± 1, j) = z(i± 1, j) + 1 . (5)

There is a probability (Pr) that two particles from the unstable site will
move along the direction of y-axis according to

z(i, j + 1) = z(i, j + 1) + 2 , (6)
z(i, j − 1) = z(i, j − 1) (7)

and with probability (1−Pr), two particles will move along the two direction
of y-axis according to

z(i, j ± 1) = z(i, j ± 1) + 1 . (8)

In this work, the system is evolved according to the dynamics (following
Eqs. (4)–(8)) starting from an initial condition with all the sites having
z = 0. With the evolution of time, the value of height variables z(i, j) of
different sites first increases due to a random addition of particles. As soon
as the value of height variable of any site reaches (or exceeds) the critical
value (zc = 4), that site topples.

Here, we have studied the following observations in BTW model with
probabilistically nonuniform distribution of particles:

1. The time evolution of the average (spatial) value of z, i.e.,

z̄ = (1/N)

N∑
i=1

zi ,
(
N = L2

)
.

2. The fraction of sites, fz, having the height variable z = 0, 1, 2, 3 in the
critical state.

3. The distribution of the avalanche size (D(s)), and avalanche time τ
(D(τ)).

4. The spatial variation of the total number of topplings occurred at a
site (i, j) during total time (t), Nt(i, j).
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3. Results

In this paper, we have studied the two-dimensional BTW model when
the two particles are distributed uniformly along x-axis. But in the case of
the distribution of particles along y-axis, there is a probability, Pr = 0.4,
that two particles are distributed nonuniformly (i.e., two particles move
along the positive direction of y-axis). Here, we have considered a square
lattice of size (L = 200). We first studied the time evolution of the average
(spatial) value of z, (i.e., z̄), which is plotted in figure 1 (a). It shows that
the value of z̄ in critical state is 1.98. It is to be noted that this value is less
than the value observed, 2.12 [2] in the case of BTW model.

Fig. 1. (a) The plot of time variation of the spatial average of height variable, (z̄),
for the probabilistically nonuniform distribution of particles along y-axis from the
unstable site (Pr = 0.4). (b) The plot of z̄ against Pr (L = 200).

We have also studied how the value of z̄ changes as the tendency of two
particles to move along a particular direction of y-axis increases. We have
calculated the value of z̄ at critical state for different values of the probability
of occuring nonuniform distribution of particles, (Pr). In figure 1 (b), the
variation of the value of z̄ at critical state is plotted for different value of Pr.
Figure 1 (b) shows that the value of z̄, decreases linearly as Pr increases.
The value of z̄ becomes 1.7, when both the particles move along a particular
direction of y-axis from the unstable site, as it topples.

Various studies related to the structure of the lattice at the critical state,
such as the fractal dimension and the fraction of the sites having different
height variable has been studied in the case of original BTW model [9].
Here, for the BTW model with probabilistically nonuniform distribution, we
have also calculated the fraction of sites (fz) for different height variables,
z = 0, 1, 2, 3. We have calculated fz for different probability Pr and plotted
in figure 2. Interestingly, it is observed here that fzs (except z = 0) approach
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the value 0.28, where in the BTW model, fzs are distinctly different for all z.
The calculation of fz is done for a lattice of size, L = 200, and in the critical
state reached t = 4× L2.

Fig. 2. Plot of fz against Pr for z = 0(∗), z = 1(�), z = 2(•) and z = 3(N);
(L = 200).

We have also calculated the distributions of duration (τ) and size (s) of
the avalanches at the critical state for three different values of the Pr = 0.1,
0.4 and 0.8. The distribution is obtained for 80 000 number of avalanches
(L = 400). The distribution of avalanche size, D(s), is plotted, on a doubly
logarithmic scale, in figure 3 (a). Similarly, the distribution of avalanche
time, D(τ), is plotted, on a doubly logarithmic scale, in figure 3 (b). We
have estimated the value of the exponents within limited accuracy and given
by, D(s) ∝ s−1.22 and D(τ) ∝ τ−1.55. The power law variations of the
distribution of avalanche size (s) and avalanche time (τ) given by: D(s) ∝
s−1.22 and D(τ) ∝ τ−1.55, indicates that the steady state is a critical state,
however, the exponents are different from the BTW model.

Here, we have calculated the total number of topplings, Nt(i, j), occurred
at a site (i, j) during the total time of evolution of the system and observed
its spatial variation on the square lattice. In figure 4 (a), the value of total
number of topplings occurred at any site, Nt(i, j), is plotted for different
lattice sites when the four particles are distributed equally among the four
nearest neighbouring sites from the unstable site as it topples, i.e., for the
BTW model. Similarly, figure 4 (b) plots the spatial variation of Nt(i, j)
when there is a probability, Pr = 0.4, that two particles will be nonuniformly
distributed along the y-axis. Here, we have plotted the spatial variation of
the total number of topplings occurred at a site, Nt(i, j), for a square lattice
of size L = 50.
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Fig. 3. (a) Log–log plot of distribution of the avalanche size (s) for the probabilist-
ically nonuniform distribution of particles along y-axis for three different proba-
bilities, Pr = 0.1(∗), Pr = 0.4(•) and Pr = 0.8(N). Both the solid lines represent
y ∼ x−1.22. (b) Log–log plot of distribution of the avalanche time (τ) for the
probabilistically nonuniform distribution of particles along y-axis for three differ-
ent probabilities, Pr = 0.1(∗), Pr = 0.4(•) and Pr = 0.8(N). Both the solid lines
represent y ∼ x−1.55.

Fig. 4. Plots the variation of Nt(i, j) for different sites of the lattice for (a) uni-
form distribution of the particles among the nearest neighbouring sites and (b) for
probabilistically nonuniform distribution of particles with a particular probability,
Pr = 0.4.

It has been observed, as expected, that the spatial variation of the num-
ber of topplings, Nt(i, j) is symmetric for the uniform distribution of par-
ticles from the unstable site. It becomes asymmetric as the distribution of
particles become probabilistically nonuniform along one direction from the
unstable site as it topples.
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4. Summary

We studied here the BTW model with probabilistically nonuniform dis-
tribution of two particles, from the unstable sites as it topples among its
nearest neighbouring sites along a particular direction. It is observed that
in the case of nonuniform distribution, the spatial average value of the height
variable, z̄, reaches a steady value, which is less than the value obtained in
the BTW model with the uniform distribution of particles. The exponents
of the power law obeyed by the distribution of size (s) and duration (τ) of
the avalanches are calculated as D(s) ∝ s−1.22 and D(τ) ∝ τ−1.55. The frac-
tions of the lattice sites, fz, having different height variables, z = 0, 1, 2, 3 at
the critical state have been calculated. The variations of fz with the prob-
ability Pr have also been studied. The total number of topplings, Nt(i, j),
occurred at any site, (i, j), is calculated and plotted for different lattice sites
for both the cases, uniform and probabilistically nonuniform distribution of
particles among the four nearest neighbouring sites from the unstable site.
The total number of topplings occurred at the central site is maximal and
in the case of uniform distribution of particles it is symmetric with respect
to x- and y-axis. However, in the case of probabilistically nonuniform dis-
tribution of particles from the unstable site the symmetry observed in the
spatial variation of the quantity, which is the total number of topplings that
occurred at a given site, is broken.

The author would like to thank the anonymous referee for bringing the
references [22] and [29] into her notice.
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