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Octupole correlations are described in a microscopic framework involv-
ing angular momentum, parity and particle number projected intrinsic
Hartree–Fock–Bogoliubov states. Linear combinations of those symmetry
restored states are considered to account for collective positive and negative
parity states in the nucleus 144Ba. The well-known Gogny D1S interaction
is used in the calculations. A strong octupole collectivity is observed in
the negative parity states justifying the assignment of 144Ba as an octupole
deformed nucleus. Higher lying excited states are studied and its structure
is identified by looking at the collective wave functions obtained in the cal-
culations. An oblate-spherical 0+ shape isomer and a two-phonon octupole
multiplet are described in detail.
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1. Introduction

The occurrence of octupole deformation in the ground state of some spe-
cific atomic nuclei was predicted long ago (see [1, 2] for reviews). However,
it has not been until recently that this prediction has been fully confirmed
experimentally [3] thanks to advances in the determination of E3 transi-
tion strengths by means of Coulomb excitation experiments with radioactive
beams. The reason is that a strong E3 strength is one of the requirements
for the existence of permanent octupole deformation in atomic nuclei. The
presence of octupole deformation implies the breaking of reflection symmetry
in the intrinsic frame, leading to symmetry bands composed of two members
of opposite parity in the laboratory frame. Those parity doublets become
eventually degenerated in the limit of strong deformation. As the character-
istic angular momentum of the octupole excitation is L = 3, the dominant
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transition between the members of the doublet is of the E3 type although
some kind of enhancement on the E1 transitions is expected too. From the
theory side, octupole correlations have been studied using an admixture of
different techniques including mean field and beyond ones with Skyrme or
Gogny interactions [4–11], or methods based on the Interacting Boson Model
(IBM) [12–14].

Recent measurements [15] performed in the nucleus 144Ba at the CARIBU
facility using the ATLAS accelerator and the CHICO2 and GRETINA de-
tectors have shown that the E3 transition from the 3− excited state to
the ground state is strongly enhanced, signaling thereby the presence of
strong octupole correlations (and eventually permanent octupole deforma-
tion) in the ground state of this nucleus. From the theory side, the physics
of strong octupole correlations in this nucleus was addressed recently [16] us-
ing the Hartree–Fock–Bogoliubov (HFB) intrinsic wave functions projected
to a good angular momentum, parity and particle number quantum num-
bers. The axially symmetric quadrupole (Q2) and octupole (Q3) moments
were used as collective coordinates1 within the framework of the generator
coordinate method (GCM) [17, 18]. The results in this paper show a good
agreement with experimental data proving the adequacy of the approach
used. The purpose of this paper is to discuss additional results, not pre-
sented in [16], like the structure of the collective wave functions of the GCM,
the properties of an isomeric oblate 0+ state obtained in the calculation or
the characteristic of two octupole phonon states.

2. Details of the theoretical description

The theoretical description is based on an underlying mean field built
with the Gogny D1S energy density functional (EDF) by solving the Hartree–
Fock–Bogoliubv (HFB) equation with constraints in the relevant collective
degrees of freedom. The HFB intrinsic wave functions are subsequently pro-
jected to a good angular momentum, parity and particle number quantum
numbers. With those “lab frame” states, linear combinations are made as to
obtain the physical states making stationary the energy — see Refs. [17, 18]
for a detailed description of all the techniques involved.

2.1. Mean field

The set of intrinsic states |ϕ(Q2, Q3)〉 is obtained by solving the HFB
equation with constraints in the K = 0 quadrupole Q20 and octupole Q30

moments and using the Gogny D1S EDF. In the calculation, axial symmetry
1 In some cases, the dimensionless deformation parameters β2 and β3 will be used
instead. They are related to the multipole moments of the mass distribution by the
general formula βl = 4π〈rlYl0〉/(3ARl

0) with R0 = 1.2A1/3 fm.
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has been preserved. As a consequence of the breaking of the parity sym-
metry, a constraint in the center-of-mass coordinate z has to be imposed to
keep the center of mass at the origin. The Coulomb interaction is treated
exactly by considering both the exchange and pairing channels. This is a
requirement to prevent spuriousities associated to the Pauli exclusion prin-
ciple to leak in the final results. The choice of the D1S parametrization is
dictated by its success in reproducing many nuclear properties all over the
nuclear chart like. As an example, related to the present study, let us men-
tion the study of octupole correlations all over the periodic table carried out
in [10, 19].

2.2. Symmetry restoration

The intrinsic states obtained so far are subsequently projected to a good
angular momentum, parity and particle number∣∣ΦJ,π,N,Z(Q2, Q3)

〉
= P JP πPNPZ |ϕ(Q2, Q3)〉 (1)

with P J , P π, PN and PZ being the projectors onto a good angular momen-
tum, parity, neutron number and proton number, respectively [18]. Due to
the imposed axial symmetry of the intrinsic states, the traditional projector
on a good angular momentum

P JM =
∑
K

gKP
J
KM (2)

only gets a contribution from the K = 0 term and, therefore, all the over-
laps and mean values involving this projector simplify and only require the
calculation of an integral in the β Euler angle [20, 21]. Additionally, the re-
striction to intrinsic states preserving the signature symmetry S = PRy(π)
which is composed of the parity operator P and the rotation of angle π
around the y-axis Ry(π) simplifies the projection on a good angular mo-
mentum and parity as only those states satisfying the natural parity rule
π = (−1)J (even J positive parity, odd J negative one) are allowed [18].

2.3. Configuration mixing

Once the projected intrinsic wave functions |ΦJ,π,N,Z(Q2, Q3)〉 are ob-
tained for a relevant range of (discrete) Q2 and Q3 values, linear combina-
tions of them are considered∣∣ΨJ,π,N,Zσ

〉
=
∑
Q2,Q3

fJ,π,N,Zσ (Q2, Q3)
∣∣ΦJ,π,N,Z(Q2, Q3)

〉
(3)

by means of a set of amplitudes fJ,π,N,Zσ (Q2, Q3). In the previous expres-
sions, σ = 1, . . . is an index used to label the different linear combinations
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(and, therefore, the different final states) with the same J and π values. The
amplitudes are determined for each value of the quantum numbers by requir-
ing the energy obtained with the wave functions |ΨJ,π,N,Zσ 〉 to be a minimum.
This leads to the Hill–Wheeler (HW) equation, and the f amplitudes have
to satisfy ∑

q′

(
HJπ

(
q, q′

)
− EJπσ N Jπ

(
q, q′

))
fJπσ

(
q′
)
= 0 , (4)

where the shorthand notation q = (Q2, Q3) has been introduced, and the
particle number quantum numbers N and Z have been omitted from the
different quantities depending upon them. The quantities entering the HW
equation are the norm overlap N Jπ(q, q′) = 〈ΦJπ(q)|ΦJπ(q′)〉 and Hamilto-
nian HJπ(q, q′) = 〈ΦJπ(q)|Ĥ|ΦJπ(q′)〉 overlap. Given the phenomenological
nature of the density-dependent term of the Gogny EDF, a prescription is
required for the evaluation of the Hamiltonian overlaps. We use the particle
number projected spatial density combined with the mixed prescription for
the parity and angular momentum projection. The same mixed prescription
is used to compute overlaps between states with different Q and Q′ val-
ues entering the GCM method. The mixed density prescription avoids the
catastrophic behavior of the energy characteristic of prescriptions based on
densities preserving spatial symmetries [22]. The impact of the use of the
particle number projected density has still to be elucidated.

For each J and π, we obtain a set of different quantum states, which are
solution of the HW equation and are characterized by the label σ. The phys-
ical interpretation of each of these states is made by looking at a quantity
derived from the fJπσ (q), namely

F Jπσ (q) ≡
∑
q′

〈
ΦJπ(q)|ΦJπ

(
q′
)〉1/2

fJπσ
(
q′
)

(5)

which takes into account the non-orthogonal nature of the generating states
|ΦJ,π(q))〉 by means of the square root (in operational sense) of the norm. It
turns out that the distribution of the F Jπσ (q) is mostly driven by the poten-
tial energy surface obtained by representing the HFB energy as a function
of Q2 and Q3, and follow the general rules of quantum mechanics: no nodes
for the ground state, one node for the first excited state along each degree
of freedom, two nodes for the second excited state, one node along Q2 and
another along Q3, etc.

It has to be mentioned that the same technique of combining the GCM
with angular momentum, parity and particle number projected wave func-
tions has been applied also with the relativistic mean field [23, 24].
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3. Results

Calculations along the lines described above have been carried out for
the nucleus 144Ba which was the subject of a recent experiment [15] where
a strong E3 transition was measured. This result implies, together with the
low excitation energy of the 1− state, the presence of a permanent octupole
deformation in this nucleus. In our study of Ref. [16], we carried out calcu-
lations following the procedure described above but focusing our attention
to the lowest lying state (σ = 1) for each possible angular momentum and
parity Jπ. In this paper, however, we turn our attention to other selected
collective excited states corresponding to σ = 2, 3, etc.

As mentioned before, the distribution of the collective amplitudes on the
collective variables Q2 and Q3 is intimately linked to the structure of the
HFB energy as a function of the same variables. This quantity is plotted in
Fig. 1 as a function of the deformation parameters β2 and β3. As a conse-
quence of the invariance under parity of the underlying nuclear interaction,
this quantity is symmetric with respect to the exchange of sign of β3. The
potential energy surface (PES) presents an octupole deformed minimum at
β2 = 0.2 and β3 = 0.1. Its depth is only of 0.90 MeV but this is enough
(see below) to concentrate the collective amplitude around the octupole de-
formed minima. In the same figure, the real shape of the nucleus, in the
form of an iso-surface plot, is shown for the configuration corresponding to
the HFB minimum. The shape has the characteristic pear shape combined
with prolate quadrupole deformation. The two dashed lines represent the
self-consistent path along the β2 (horizontal line) or β3 (vertical line) degrees

Fig. 1. The HFB energy of the nucleus 144Ba is plotted as a function of the defor-
mation parameters β2 and β3 (see the footnote for definition). Also the real spatial
density corresponding to the minimum is shown.
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of freedom. The latter is the one to be associated with the octupole degree
of freedom. The octupole self-consistent path shows a very weak dependence
with the quadrupole parameter β2, typical of a weak quadrupole–octupole
coupling (see [16] for a discussion). Finally, let us mention that for β3 = 0,
there is a rather flat region around β2 = 0 that will be of significance in the
discussion below.

The solution of the HW equation (Eq. (4)) gives us the energies EJπσ and
collective amplitudes fJπσ (q) required to compute the F Jπσ (q) which are the
only quantities with the meaning of a probability amplitude. The reason is
that the F Jπσ (q) are amplitudes in an orthogonal basis whereas the fJπσ (q)
are not. In order to assign a set of states to a band, we have to look for
F Jπσ (q) amplitudes with more or less the same structure as a function of
the collective variables. This procedure was followed in [16] to identify both
the ground state positive parity rotational band and the negative parity
one. In this paper, we are going to study additional structures associated
to the amplitudes |F Jπσ (q)|2 depicted in Fig. 2. The amplitude of the 0+1
ground state, depicted in Fig. 2, has the typical structure of two Gaussians
along each degree of freedom. The width of the Gaussian along the octupole
degree of freedom is much larger than the one along the quadrupole direction
and extends to be appreciably different from zero at the HFB minimum. It
reminds of the square of the ground state wave function of a one-dimensional
harmonic oscillator. Negative parity states like the 1−1 , not shown in the
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Fig. 2. (Color online) Collective amplitudes F Jπσ (q) of Eq. (5) for different values
of Jπσ are plotted as a function of the deformation parameters β2 and β3. The color
scale goes from light gray/blue (zero amplitude) to dark gray/red (maximum value
of the amplitude).
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figure (see [16]), have the shape of a Gaussian along β2 and two Gaussians
(each of them peaked at the two HFB minima) along β3. It is zero along the
β3 = 0 line as a consequence of parity symmetry restrictions. The amplitude
of the 1− state reminds the structure of a zero-phonon state along β2 and
a one-phonon state along β3. In Fig. 2, the amplitude corresponding to the
0+2 is shown: it is similar to the one of the ground state (i.e. Gaussian shape
along both deformation degrees of freedom) but this time centered around
β2 = 0, a region where the HFB energy is rather flat. This state can be
interpreted as an oblate-spherical shape isomer of the ground state and, as
discussed below, lies quite low in excitation energy. The next four amplitudes
considered in Fig. 2 correspond to the 0+3 , 2

+
2 , 4

+
2 and 6+2 states. The four

amplitudes look very similar, with three maxima, one at β3 = 0 higher that
the other two located at β3 = ±0.25. They correspond to a Gaussian shape
along the β2 degree of freedom (akin to the ground state wave function)
and a two-octupole phonon structure along the octupole degree of freedom.
We, therefore, conclude that the four states correspond to the multiplet of
a two-phonon octupole excitation. As discussed below, the multiplet is not
degenerated in energy and the energy centroid is located at an excitation
energy higher than twice the energy of a single octupole phonon — the
energy of the 3−1 state. This is a clear indication of the anharmonicity of
the octupole excitation and it is no surprising given the octupole deformed
character of 144Ba.

The excitation energy of the different states is represented in Fig. 3 in the
form of a band-drawing where the states with the same intrinsic structure
are assigned to the same band. The positive parity and negative parity ro-
tational bands were already discussed in [16]. The bands turn out to have a
much smaller moment of inertia than the experimental one, a characteristic
of our calculations related to the fact that only states with K = 0 are con-
sidered in the calculation [20, 25, 26]. The oblate-spherical isomer discussed
above is located at a quite low excitation energy of 1.06 MeV, comparable to
the excitation energy of the 3−1 state at 1.01 MeV. The lowest lying member
of the two-octupole phonon multiplet is the 0+3 at an excitation energy of
3.03 MeV. The next member is the 2+2 at 3.10 MeV, followed by the 4+2 at
3.53 MeV and finally the 6+2 state at 4.10 MeV. The multiplet is not degen-
erated in energy with a quite large dispersion in energy of around one MeV.
The reason for the splitting as well as the fact that the excitation energy of
the multiplet’s centroid energy is not located at twice the excitation energy
of the 3−1 is probably the anharmonicity of the excitation and a coupling with
the quadrupole degree of freedom. The two-octupole structure was already
observed in calculations [11] with the GCM using Q2 and Q3 as generat-
ing coordinates but without projection to good quantum numbers. In those
calculations, more involved structures, like two-phonon quadrupole states
or one-phonon quadrupole, one-phonon octupole states were also observed.
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The observation of those states in the present calculation requires a larger
set of quadrupole and octupole states than the one considered here due to
the large spatial extension of the collective amplitudes F Jπσ (q) required to
accurately describe those states.
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Fig. 3. Theoretical spectrum obtained in the solution of the HW equation. The pos-
itive parity rotational band is on the left, followed by the negative parity rotational
band. Next is the multiplet corresponding to a two octupole phonon excitation.
The last state corresponds to an oblate-spherical shape isomer. No other states
with the same structure have been found in our calculation meaning that they are
located at a large excitation energy.

As far as we know, neither the oblate-spherical 0+2 state nor any of the
members of the two-phonon octupole state have been observed experimen-
tally and the results of the present calculation represent a genuine prediction
of the method to be confirmed by the experiment.

One of the advantages of the present type of calculations is in the calcu-
lation of transition strengths. The wave functions have the proper angular
momentum quantum numbers and, therefore, the exact formulas can be used
and no approximations like the rotational formula are required [27, 28]. Ex-
amples of reduced transition elements are the |〈0+3 ||E3||3

−
1 〉| = 0.383 eb3/2

connecting one of the two-phonon octupole states to the one-phonon one.
Another reduced matrix element is |〈3+1 ||E3||6

+
2 〉| = 0.642 eb3/2 or the

|〈2+2 ||E1||3
−
1 〉| = 0.016 eb1/2. A thorough analysis of other transitions will

be given elsewhere [29].
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4. Summary and prospects

We have performed calculations in the framework of the GCM using the
quadrupole and octupole degrees of freedom as generating coordinates. In-
trinsic wave functions projected to a good angular momentum, parity and
particle number are used as basis states. The results obtained with the
Gogny D1S interaction for the nucleus 144Ba agree well with recent ex-
perimental data. Other higher lying excited states are studied, including
an oblate-spherical 0+ shape isomer and a two-phonon octupole multiplet
formed by a 0+, 2+, 4+ and 6+ state. The proposed method has proven
to be flexible enough to describe many low-lying collective excited states
of quadrupole and octupole character. An exhaustive study of transition
strengths is possible but it is deferred to a future publication. Other issues,
as for instance considering other degrees of freedom in the GCM (pairing
correlations are a good candidate), will be also addressed in the future.
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