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We show the first results for the elastic scattering of neutrons off oxy-
gen and calcium isotopes obtained from ab initio optical potentials. The
potential is derived using self-consistent Green’s function theory (SCGF)
with the saturating chiral interaction NNLOsat. Our calculations are com-
pared to available scattering data and show that it is possible to reproduce
low-energy scattering observables in medium mass nuclei from first princi-
ples.
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1. Introduction

Recent years have seen considerable advances in the theory of optical
potentials. Non-locality effects have been seen to be necessary for describing
three-body processes [1, 2], the importance of both scattering and bound
states in the coupling to breakup channels has been explored [3], and global
dispersive optical potentials have been developed [4].

The greatest challenge remains, however, the one of describing the nu-
clear structure and scattering consistently from the same theory. Many-
body Green’s function methods are particularly suited to attempt this for
medium and large nuclei since their central quantity, the self-energy, is natu-
rally linked to the Feshbach theory of optical potentials [5, 6]. In particular,
the particle part of the self-energy is equivalent to the original formulation
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of Feshbach, while its hole part describes the structure of the target [7].
Nuclear field theory is one of the first (semi phenomenological) attempts
to build such a theory for atomic nuclei [8, 9] and it has been extended to
nuclear transfer reactions [10, 11]. Another incarnation of Green’s function
related theories is the dispersive optical model [12], which is a data driven
formulation of global (local and non-local) potentials constructed as the best
possible parameterization of the microscopic self-energy [4, 13].

For transfer reactions, such as (d, p), it would be particularly impor-
tant to have an optical potential that is deduced consistently from the same
Hamiltonian used in the proton–neutron channel [2]. To do so, one needs
realistic nuclear interactions and ab initio calculations of elastic nucleon–
nucleus scattering. The no-core shell model with continuum (NCSMC) has
been successful to calculate scattering and transfer reactions for light tar-
gets [14–16]. On the other hand, the self consistent Green’s function (SCGF)
formalism [17, 18] is better suited to derive optical potentials for medium
mass targets. SCGFs have been used to calculate phase shifts [19] and to
investigate analytical properties of optical potentials [20]. However, these
calculations were limited to two-body forces and a direct comparison to the
experiment has been hindered by the lack of realistic interactions capable to
reproduce accurately nuclear radii.

Three-body interactions have been recently implemented for SCGF in
[21–23]. Moreover, the introduction of the NNLOsat interaction [24] has
allowed a good reproduction of nuclear saturation and, hence, of radii and
binding energies across the oxygen [25] and calcium chains [26]. Although
this interaction has limitations regarding the symmetry energy in neutron-
rich nuclei, we are now in the position to make a meaningful comparison of
first principle approaches to scattering data. Here, we perform state of the
art SCGF calculations to test the quality of current ab initio methods and
of the NNLOsat Hamiltonian in predicting elastic scattering.

2. The microscopic optical potential

The irreducible self-energy, Σ?(ω), has the general spectral representa-
tion
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where Σ(∞)
αβ is the correlated and energy-independent mean field. We per-

form calculations with the third order algebraic diagrammatic construction
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[ADC(3)] method, where the matrices M(N) couple single particle states
to intermediate 2p1h (2h1p) configurations, C (D) are interaction matrices
among these configurations and K are their unperturbed energies.

We use a spherical harmonic oscillator basis consisting of Nmax+1 oscil-
lator shells, so the optical potential for a given partial wave (l, j) is expressed
in terms of the oscillator radial functions Rn,l(r) as

Σ? l,j(r, r′;E) =
∑
n,n′

Rn,l(r)Σ
? l,j
n,n′(E)Rn′,l(r

′) , (2)

which is non-local and depends on energy, angular momentum and parity.
We solve the corresponding scattering problem in the full one-body space (so
that the kinetic energy is treated exactly, without truncations) and account
for the non-locality and l, j dependence of Eq. (2). For each partial wave
and parity, the phase shifts δ(E) are obtained as a function of the projectile
energy, from where the differential cross section is calculated. We show
results for incident energies in the laboratory frame, except for Fig. 4 below.

3. Results

In the following, we consider the volume integrals of the real (JV ) and
imaginary (JW ) parts of the self-energy (i.e., the optical potential):
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since these are strongly constrained by experimental data [6].
Figure 1 shows the volume integrals of the neutron-16O for different

model space truncations. Both the part of the self-energy below the Fermi
surface (which describes the structure of the target) and the resonant struc-
tures for scattering at low energy are substantially converged already for
Nmax = 11. The oscillations seen at higher energies (E >10 MeV) are an
artefact of using a discretised model space and keep changing with Nmax.
They can fade away for an infinite space, or by exploiting a basis with the
continuum.

Figure 2 shows JW for selected closed sub-shell Ca isotopes. The gap
at the Fermi surface, where =mΣ?(E) = 0, shifts to higher energies and
eventually crosses the continuum threshold with increasing neutron number.
Compared to previous calculations using the Argonne v18 and N3LO(500)
interactions [20], the NNLOsat predicts an increased level density in the
proximity of the Fermi energy, as expected for a correct nuclear saturation.
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Fig. 1. Volume integrals of the real (left) and imaginary (right) parts of the
neutron-16O optical potential calculated for different numbers oscillator shells in
the model space: Nmax = 7 (dotted), 11 (dashed) and 13 (solid lines). Note that
=m{Σ?(E = EF)} = 0, so JW (E = EF) = 0, where EF is the Fermi energy. Thus,
the potential for particle (holes) states is above (below) the gap in the JW plot.

Fig. 2. Volume integral of the imaginary part of the neutron optical potentials,
JW (E), for the 40Ca, 48Ca and 54Ca targets. Calculated at Nmax = 11.

In Fig. 3, the neutron s1/2 phase shifts for 16O is shown for Nmax = 11
and 13. The resonance at E ≈ 5 MeV is almost converged for these spaces.
Note that this state is dominated by 2p1h components and thus it can still
be affected by many-body truncations. The wiggles computed for energies
E > 8 MeV are due to similar but very narrow resonances. Again, these
are linked to the discretisation of the model space and drift when increasing
the number of oscillator shells. The right panel of Fig. 3 shows the phase
shifts for other representative partial waves. The p1/2 has a sub-threshold
bound state, while there is a very narrow f7/2 that is also seen experimen-
tally within 1 MeV of our calculation [27]. The dominant d3/2 resonance
is converged with respect to Nmax and it is computed at ≈ 1.15 MeV in



Ab Initio Optical Potentials and Nucleon Scattering on Medium Mass . . . 277

the c.m. energy, while the experimental value is 0.94 MeV. In general, we
find that NNLOsat predicts the location of dominant quasiparticle and holes
states with a (conservative) accuracy of < 2 MeV for this nucleus.
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Fig. 3. Nuclear phase shifts, δ(E), for scattering off 16O as a function of the incident
neutron energy. Left panel: dependence of the s1/2 partial wave on the number of
oscillator shells, for Nmax = 11 (dashed) and 13 (solid). The oscillations at larger
energies are narrow resonances. Right panel: d3/2, p1/2 and f7/2 partial waves.

Finally, Fig. 4 compares the differential cross section for the elastic scat-
tering of neutrons off 40Ca with the experiment at 13.56 MeV c.m. energy,
with Nmax = 11. Minima in the cross section are reproduced reasonably
well, confirming the correct prediction of matter radii, but there appears to
be a general lack of absorption. This may be due to either missing doorway
configurations (3p2h and beyond) or to the (still crude) model space.
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Fig. 4. Plot of differential cross section for neutron elastic scattering on 40Ca at
13.56 MeV of center-of-mass energy compared with experimental data from [28].
Note that proton scattering on 40Ca was similarly computed in Ref. [29].

Even with the limitations of a (non-optimal) oscillator basis, we found
that most important features of optical potentials are well-reproduced. In
the long term, it will be necessary to properly account for the continuum
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in calculating the self-energy and to improve the realistic nuclear interac-
tions. Nevertheless, it is clear from the present results that reliable ab initio
calculations of optical potentials are now a goal within reach.
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