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An idea of symmetry-dependent form of the electromagnetic transition
operators is presented by making use of the Generator Coordinate Method
and the Gaussian Overlap Approximation. Using this approximation, it
turns out that the form of electromagnetic transition operators acting in
the collective nuclear space can be helpful in recognition of symmetries in
nuclear spectra.

DOI:10.5506/APhysPolB.48.281

1. Introduction

One of the most popular methods of constructing nuclear collective mod-
els is the prescription given by Bohr and his collaborators many years ago
[1–3]. However, in this case, a construction of quantum observables is not
always unique, even the choice of space of quantum states is to some degree
arbitrary. The electromagnetic multipole transition operators are a good
example of these difficulties. In fact, there are not many papers devoted
to this problem. Usually, the collective electromagnetic transition operators
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are obtained on a phenomenological basis. Their forms are rather a kind of
guess based on expected transformation properties of these operators with
a number of phenomenological coefficients which allow to fit the theoretical
transition probabilities to the experimental data.

The phenomenological collective electric transition operators based on
the generalized collective model are a typical example of this procedure [4].

The more fundamental way is to construct the collective transition op-
erators from their transformation properties using the so-called prime fac-
tors [5]. However, the full set of required (in practice) prime factors is
unknown. In addition, the formulae contain many arbitrary unknown scalar
functions.

In this paper, we show an example of derivation of collective electromag-
netic multipole transition operators making use of the Generator Coordinate
Method with the generalized Gaussian Overlap Approximation [6, 7].

These results are discussed in the context of structure of the GCM col-
lective space and symmetries of generating functions. Using an example of
two types of axial symmetry SO(2) and D∞, we analyse a kind of “selection
rules” implied by the structure of constructed collective transition operators.

These “selection rules” can be used as an additional tool to the standard
symmetry selection rules based on the Kronecker products for irreducible
representations [8].

2. Generator Coordinate Method with Gaussian Approximation
for non-Hermitian operators

The extended GCM+GOA method is designed for Hermitian opera-
tors [7]. In principle, GCM+GOA method allows to transform the Her-
mitian operators, like Hamiltonians, acting on the many-body nucleon state
space, into the collective state space determined by the collective variables
q = (q1, q2, . . . , qs) parametrizing the trial function

|Ψ(q)〉 =
∫

dq f(q)|q〉 . (1)

Using this trial function and assuming the Gaussian Overlap Approximation,
any matrix element of the Hermitian operator Â can be expressed in terms
of the collective space

〈Ψ2|Â|Ψ1〉 ≈
∫

dq
√
|g|φ2(q)?

(
V̂A + F̂A + T̂A

)
φ1(q) , (2)

where Â→ Â ≈ V̂A+F̂A+T̂A, and the collective functions are of the form of

φk(q) =

∫
dq′fk

(
q′
)
N 1/2

(
q, q′

)
. (3)
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Here, N 1/2(q, q′) denotes the square root of the overlap of the generator
function, see [7].

The 0-order (V̂ ), 1-order (F̂ ) and 2-order (T̂ ) realizations of the oper-
ator Â are given by some combinations of the covariant derivatives of the
overlap functions and can be found, e.g., in [7].

As it was mentioned above, the transition operators are not-Hermitian
operators. To use the GCM+GOA method, one needs to rewrite the transi-
tion operators as the combination of two Hermitian operators [9]

M̂(ξ; lm) = M̂+(ξ; lm) + iM̂−(ξ; lm) , (4)

where

M̂+(ξ; lm) =
1

2

(
M̂(ξ; lm) + M̂(ξ; lm)†

)
=

1

2

(
M̂(ξ; lm) + (−1)mM̂(ξ; l,−m)

)
,

M̂−(ξ, lm) =
−i
2

(
M̂(ξ; lm)− M̂(ξ; lm)†

)
=
−i
2

(
M̂(ξ; lm) + (−1)m+1M̂(ξ; l,−m)

)
. (5)

The label ξ = E,M denotes either electric or magnetic transitions, respec-
tively. The symbol l denotes the multipolarity and m = −l,−l + 1, . . . , l
labels SO(3) tensor components of the transition tensor operator.

The collective representation Q̂(ξ; lm) of M̂(ξ; lm) within GCM+GOA
approximation can be thus written as follows [9]:

M̂(ξ; lm)→ Q̂(ξ; lm) ≈
(
V̂+ + iV̂−

)
+
(
F̂+ + iF̂−

)
+
(
T̂+ + iT̂−

)
. (6)

3. Nuclear shape symmetry and the collective
transition operators

The generating function of the GCM method is usually chosen by means
of some microscopic calculations to reproduce approximate configurations of
nucleons in a nucleus. Obviously, if this nucleus has a shape symmetry, this
property should be reproduced with the same symmetry of the generating
function. In such cases, the collective transition operators can have special
features implied by these symmetries.

In this section, to present the predictive power of shape symmetry-
dependent collective transition operators, we consider two simple cases of
axially symmetric nuclear shapes which correspond to two different symme-
try groups: D∞ and SO(2).
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The first group D∞ has a reacher structure because it consists of not
only all rotations Rz(Ω3) around the z-axis but also the rotations about
the angle π around the infinite number of axes perpendicular to the z-axis.
This means that generators of this group are the rotations Rz(Ω3) and, for
example, the rotation C2y around the y-axis about the angle π.

The D∞-symmetric nuclear shapes are the axially symmetric shapes
which are identical on both ends of the body along the z-axis like the regular
ellipsoid. It excludes the octupole shapes, e.g., pear-like shapes.

The second axial symmetry group is the group SO(2) ⊂ D∞ generated
only by the rotations Rz(Ω3) and which allows, e.g., for octupole pear-like
nuclear shapes.

There is a question, if the collective transition operators obtained for
these two similar but different shape symmetries allow to distinguish between
both cases.

To answer the question, let us consider the generating functions con-
sisting of the rotation operator R̂(Ω) parameterized by the Euler angles
Ω = (Ω1, Ω2, Ω3) and the intrinsic generating function describing vibrating
nuclear shape with the appropriate symmetry

|Ωβ〉 = R̂(Ω)|β〉 . (7)

In the following, for simplicity, we are using only one vibrational collective
variable β, i.e., we consider 3 rotational degrees of freedom Ω and one vibra-
tional β. However, because of the axial symmetry of the intrinsic generating
function, the third Euler angle Ω3 is irrelevant and should be excluded from
the collective manifold.

In the first case of D∞-invariant distribution of nucleons, the intrinsic
generating function has to fulfil two conditions:

R̂(0, 0, Ω3)|β〉 = |β〉 , Ĉ2y|β〉 = |β〉 . (8)

Effectively, the generating functions do not depend on Ω3.
The metric tensor of this three-dimensional collective manifold is diago-

nal, where the rotation and vibration parts can be written in the following
form, k, k′ = 1, 2:

gΩ1Ω1 = sin2Ω2〈β|
(
Ĵy

)2
|β〉 , gΩ2Ω2 = 〈β|

(
Ĵy

)2
|β〉 ,

gββ = 〈β|
←−
∂

∂β

−→
∂

∂β
|β〉 . (9)

Here, the operators Ĵk are components of the total angular momentum op-
erator in the nucleon space.
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In the following, we consider the collective transition operators expanded
up to the first non-vanishing term (either V̂ or F̂ or T̂ ).

Using the formulae from paper [9] for the lowest order approximation (V̂ )
for D∞-symmetric shapes, the multipole transition operator is derived as:

Q̂(0)(ξ; lm) = Dl
m0

?
(Ω1, Ω2, 0) δ(l ∈ 2Z)

×
{(

1 +
1

2
dim(X)

)
〈β|M̂(ξ; l0)|β〉+

−1

2

〈β|
←−
∂
∂β M̂(ξ; l0)

−→
∂
∂β |β〉

〈β|
←−
∂
∂β

−→
∂
∂β |β〉

− 〈β|ĴyM̂(ξ; l0)Ĵy|β〉

〈β|
(
Ĵy

)2
|β〉

}
. (10)

It is important to notice that these operators vanish for all odd multi-
polarities.

In the case of odd multipolarities, e.g., for the dipole transitions, the
first non-vanishing operator is the term (F̂ )

Q̂(1)(ξ; 1m) = +
√
2B1(β)L̂1m(Ω1, Ω2, 0) , (11)

where

B1(β) =
−Im〈β|ĴyM̂(ξ; 11)|β〉

〈β|Ĵ2
y |β〉

(12)

and L̂1m(Ω1, Ω2, 0) is the total collective angular momentum operator as a
function of only two Euler angles Ω1, Ω2. The terms with the third Euler
angle disappear.

The case when the intrinsic generating function is only SO(2)-invariant is
very similar to previously considered symmetry D∞. The collective manifold
has exactly the same structure as in the previous case. However, the 0-order
approximation of the collective transition operator does not disappear
for odd multipolarities

Q̂(0)(ξ; lm) = Dl
m0

?
(Ω1, Ω2, 0)

{(
1 +

1

2
dim(X)

)
〈β|M̂(ξ; l0)|β〉+

−1

2

〈β|
←−
∂
∂β M̂(ξ; l0)

−→
∂
∂β |β〉

〈β|
←−
∂
∂β

−→
∂
∂β |β〉

− 〈β|ĴyM̂(ξ; l0)Ĵy|β〉

〈β|
(
Ĵy

)2
|β〉

}
. (13)

This is the main and important difference between the both symmetries.
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4. Conclusions

The axial symmetry SO(3) implies the Hamiltonian symmetry selection
rules which in this case are governed by the conservation law of the third
component of angular momenta. The lowest order GCM+GOA form of the
transition operator is a set of deformation-dependent functions multiplied by
the Wigner function corresponding to the appropriate angular momentum.

In the case of D∞ symmetry, in addition to the standard Hamiltonian
symmetry selection rules, for the transition matrix elements determined by
the Kronecker products of irreducible representations (notation as in [10]):
{A1 = A1 ×A1; A2 = A1 ×A2; A1 = A2 ×A2; Eµ = Eµ ×A1 = Eµ ×A2 =
A2 × Eµ; Eµ1+µ2 + Eµ1−µ2 = Eµ1 × Eµ2 , µ1 6= ±µ2; Eµ1±µ2 + A1 + A2 =
Eµ1×Eµ2 , µ1 = ±µ2}, one expects that due to properties of obtained electro-
magnetic transition operators, the dipol and octupole transitions are zero or
small. The lowest non-zero transition operator is the product of a vibrational
function and the angular momentum operator (the allowed transformations
are only between states having the same angular momentum).

This example shows that the shape symmetry-dependent transition op-
erators can be useful tool for searching of nuclear symmetries. This can be
important for searching higher point symmetries like tetrahedral one, where
the Hamiltonian symmetry selection rules do not give a clear criterion for
discovering of this symmetry.

This work was partially supported by the Polish–French COPIN collab-
oration of the project 04-113 and the Bogoliubov–Infeld JINR program.
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