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Weak-decay rates under various stellar density and temperature condi-
tions are studied in several mass regions including neutron-deficient medium-
mass waiting-point nuclei involved in the rp-process, neutron-rich medium-
mass isotopes involved in the r-process, and pf -shell nuclei of special impor-
tance as constituents in presupernova formations. Weak rates are relevant
to understand the late stages of the stellar evolution, as well as the nu-
cleosynthesis of heavy nuclei. The nuclear structure involved in the weak-
decay processes is described within a microscopic deformed quasiparticle
random-phase approximation (QRPA) based on a selfconsistent mean field
obtained from Skyrme Hartree–Fock + BCS calculations. This approach
reproduces reasonably well both the experimental β-decay half-lives and
the Gamow–Teller strength distributions measured under terrestrial condi-
tions.
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1. Introduction

The spin–isospin response of the nucleus is an interesting issue that has
received increasing attention in the last decades [1]. The interest is not
only from the strict nuclear structure point of view, but also for nuclear
astrophysics. Pushing further our present knowledge of this response would
certainly contribute to constrain nuclear models and to approach regions
with unusual isospin ratios with a better understanding of the underlying
nuclear structure [2]. In astrophysics, weak interactions in nuclei are of
paramount importance to understand the late stages of the stellar evolution
[3, 4], where electron captures (EC) by nuclei and β decays determine to a
large extent the dynamics of these phases of the star. In particular, nuclear
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physics input is a fundamental ingredient in network calculations aiming to
simulate astrophysical processes related to the nucleosynthesis in explosive
events [5]. Unfortunately, experimental information about the nuclear prop-
erties of the exotic nuclei involved in those processes is still very scarce and
the nuclear input must be taken from predictions of theoretical models.

In this work, we study weak-decay rates in ranges of densities (ρ) and
temperatures (T ) of astrophysical interest in some selected examples cor-
responding to: (i) pf -shell nuclei, which are the main constituents of the
stellar core in presupernova formations; (ii) neutron-deficient nuclei involved
in the rp-process; and (iii) neutron-rich nuclei involved in the r-process. The
theoretical approach is based on a deformed Skyrme HF+BCS+QRPA for-
malism, which is presented in the next section. It has been shown that this
approach is able to reproduce the experimental information available on
β-decay half-lives [6, 7], as well as on the more demanding Gamow–Teller
(GT) strength distributions extracted from β-decay in the case of unstable
nuclei [9] and from charge-exchange reactions in the case of stable ones [10].

2. Theoretical formalism

The weak-interaction rates can be expressed as follows:

λ =
ln 2

D

∑
i,f

[Pi(T )] [Bif ] [Φif (ρ, T )] , (2.1)

where D = 6147 s. The summation extends over all initial (i) and final (f)
states involved in the process. The three terms within brackets contain the
probability Pi(T ) that excited states in the parent nucleus are thermally pop-
ulated; the nuclear structure information Bif ; and the phase-space factors
Φif , respectively. Assuming thermal equilibrium, the occupation probabili-
ties of the states i are given by a Boltzmann distribution. For the range of
temperatures studied in this work, T = 1–10 GK, it is sufficient to consider
excitation energies in the parent nucleus below 1 MeV. The nuclear structure
part contains the GT strengths for allowed transitions, which are calculated
within QRPA. The GT strength for a transition from i to f is given by
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where (gA/gV )eff = 0.7(gA/gV )bare, and σ and t are the spin and isospin
operators, respectively. The details of the theoretical formalism have been
described elsewhere [11]. In summary, the method starts with a selfconsis-
tent deformed Hartree–Fock mean-field calculation with Skyrme interactions
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including pairing correlations. The force SLy4 is used as a representative
of the Skyrme forces. Calculations of GT strengths are performed subse-
quently within QRPA for the solution of the HF+BCS problem, i.e., for the
deformed configuration that minimizes the energy. The calculation includes
a spin–isospin separable residual interaction in particle–hole and particle–
particle channels.

For odd-A nuclei, the ground state is treated as a one-quasiparticle state
in which the odd nucleon occupies the single-particle state of the lowest en-
ergy. We use the equal filling approximation, treating the unpaired nucleon
on an equal footing with its time-reversed state. The transitions correspond-
ing to phonon excitations are treated similarly to the even–even case, but
with the odd nucleon blocked in the calculation. The transitions involving
the unpaired nucleon are treated perturbatively [12].

The phase-space factors involve EC and β± decays depending on the
problem studied. Because in the studied astrophysical scenarios the atoms
are fully ionized, ECs occur from the degenerate electron plasma. This
is a difference with respect EC in the laboratory, where the electrons are
captured from the atomic orbitals. The phase-space factors are given by:

ΦEC
if =

∞∫
ω`

ωp(Qif + ω)2F (Z, ω)Se−(ω) [1− Sν(Qif + ω)] dω ,

Φβ
±

if =

Qif∫
1

ωp(Qif − ω)2F (∓Z + 1, ω) [1− Se±(ω)] [1− Sν(Qif − ω)] dω ,

(2.3)

where ω(p) is the total energy (momentum) of the electron and Qif is the
total energy available in the decay, which is obtained from the experimental
masses. F (Z, ω) is the Fermi function and ω` = 1 if Qif > −1 or ω` = |Qif |
otherwise. For the stellar conditions, we are interested in Sν = Se+ = 0,
whereas the electron distribution is given by a Fermi–Dirac distribution with
temperature T and chemical potential µe

Se =
1

exp [(ω − µe) /(kBT )] + 1
. (2.4)

The phase-space factor, especially for EC, depends on both ρ and T
through the electron distributions and, therefore, the half-lives under stellar
conditions will be different from those under laboratory conditions.
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3. Results

As an example of the results obtained in pf -shell nuclei, we can see in
Fig. 1 the GT strength distribution corresponding to the 55Mn→55Cr tran-
sition. We consider the transitions from the ground state [312]5/2− on the
left-hand side and from the excited state [303]7/2− on the right-hand side.
The data correspond to the (n, p) charge-exchange reaction [13]. In Fig. 2,
the EC rates are shown as a function of T for various densities ρYe, where
Ye is the electron-to-baryon ratio. We can see the relative contributions of
the ground and excited states to the total rate. In addition, the rates from
the ground state with full population are shown as ‘g.s. only’. The EC rate
and the relative importance of the excited states are finally determined by
their thermal population at a given T , by the phase factor ΦEC(ρ, T ), and
by the structure of the GT strength distribution.
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Fig. 1. The Gamow–Teller strength distribution B(GT+) for the transition 55Mn
to 55Cr plotted versus the excitation energy of the daughter nucleus. Experimental
data extracted from (n, p) reactions [13] are compared with SLy4–QRPA results
for the decay of the ground state in 55Mn. The GT strength distribution of the
excited state at E = 0.126 MeV is also shown.

Figure 3 contains the temperature dependence of the weak-decay rates
in 76Sr, which is a waiting point in the rp-process. The left panel shows
the contributions to the total rate from the 0+ ground state and from the
excited 2+ state. This nucleus is well-deformed, having a 2+ rotational state
at very low energy (0.62 MeV), which is thermally populated at relatively
low T . As a result, non-negligible contributions are found already at T = 2
GK within the range of temperatures typical for the rp-process. The three
lines labeled 2+ in the figure correspond to the allowed decays of the 2+

state into 1+, 2+, and 3+ states in the daughter nucleus. The population of
the excited state at high T naturally implies a corresponding depopulation
of the ground state, decreasing its contribution to the total rate.
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Fig. 2. Weak-decay rates for 55Mn from SLy4–QRPA calculations as a function
of T (GK) for densities ρYe = 1010, 108, 106 mol/cm3. The separate contributions
from the ground and excited states are shown.
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Fig. 3. Weak-decay rates of 76Sr as a function of the temperature T (GK). (a) Con-
tributions from the ground and excited 2+ states to the total rates. (b) Decompo-
sition of the rates into their β+ and EC components, evaluated at various densities
ρYe (mol/cm3). (c) Total rates for various densities.

In the middle panel of Fig. 3, we can see the competition between the
β+ and EC rates. Whereas the former is almost independent of ρ and T , the
latter exhibits a strong dependence that makes EC contributions dominant
at high densities and high temperatures. The right panel shows the total
rates.

4. Conclusions

Weak-decay rates as a function of the density and temperature have
been calculated within a model that includes thermal population of the
initial states and phase-space factors from EC and β decay. The Gamow–
Teller strength distributions are obtained within a QRPA formalism based
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on deformed Skyrme HF+BCS calculations. We have shown that the present
model describes fairly well the half-lives and GT strength distributions mea-
sured from β decay and charge-exchange reactions. Contributions of the
excited states to the total rates have been calculated, showing that their rel-
ative importance increases with T . Competition between EC and β-decay
has been shown to be important in neutron-deficient nuclei. The particular
conditions of ρ and T finally determine which process is the dominant one.

This work was supported by Ministerio de Economía y Competitividad,
MINECO (Spain) under contract FIS2014-51971-P.
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