INFLUENCE OF PROPERTIES OF SUPERHEAVY NUCLEI ON THEIR α DECAYS*

G.G. Adamian^a, N.V. Antonenko^{a,b}, A.N. Bezbakh^a, R.V. Jolos^a L.A. Malov^a, K. Wang^c, S.-G. Zhou^c, H. Lenske^d

^aJoint Institute for Nuclear Research, 141980 Dubna, Russia ^bTomsk Polytechnic University, 634050 Tomsk, Russia ^cInstitute of Theoretical Physics, CAS, 100190 Beijing, China ^dJustus-Liebig-Universität, 35392 Giessen, Germany

(Received December 14, 2016)

The structure of superheavy nuclei is considered with the microscopic– macroscopic approach based on the two-center shell model. The shell effects are compared with those obtained in the self-consistent approaches. The α -decay chains of ^{291,293}Ts and ²⁸⁸Mc are considered.

DOI:10.5506/APhysPolB.48.441

1. Introduction

The experiments on complete fusion reactions with ⁴⁸Ca beam and various actinide targets were successfully carried out [1-7] in order to synthesize superheavy nuclei with Z = 112-118. The investigation of transfermium elements expands our knowledge of the single-particle structure, location of the shell closures, and decay modes of heaviest nuclei [8]. The structure of superheavies crucially influences the evaporation residue cross sections in the actinide-based complete fusion reactions [9].

Although the low cross sections for production of superheavy nuclei offer rather restricted nuclear-structure information, in recent years a set of the experimental data on the structure of the heaviest nuclei has been considerably increased because the experimental setups began to combine α , e^- , and γ spectroscopy [10]. In Ref. [7], the α -decay chains of ²⁸⁸Mc nucleus were produced in the ⁴⁸Ca + ²⁴³Am reaction. A structure information on the low-lying states of the odd–odd superheavy nuclei below ²⁸⁸Mc was obtained in α – γ coincidences.

^{*} Presented by N.V. Antonenko at the Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape", Zakopane, Poland, August 28–September 4, 2016.

In this paper, we exploit the potential of the two-center shell model (TCSM) [11] with the parameters determined in [12–14] to calculate the quasiparticle spectra. The shell closures obtained with the TCSM potential are compared with those calculated with the self-consistent single-particle potentials.

2. Structures of nuclei in α -decay chains

The structure of superheavies crucially influences the evaporation residue cross sections and α -decay properties. Nuclear models contain a number of parameters which are fixed for the best description of known nuclei. In Ref. [12], we proposed the microscopic–macroscopic approach based on the TCSM. The parameters were set so to describe the spins and parities of the ground state of known heavy nuclei. This approach has been used in Ref. [14] to reveal the trends in the shell effects and Q_{α} values with Z. These trends are close to those resulted from the self-consistent microscopic calculations [13]. Here, we will use the microscopic–macroscopic approach [14] to study the one-quasiparticle spectra of nuclei in the α -decay chains of 291,293 Ts and 288 Mc.

Calculating the potential energy surface as a function of collective coordinates with the TCSM, we find the ground-state potential minimum in which the energies of the low-lying one-quasiparticle states are obtained. The details of the calculations of binding energies of nuclei in the ground states are presented in Ref. [14]. Using these energies, we calculate the Q_{α} values for the α decays from the ground state-to-ground state and T_{α} with the expression of Ref. [8].

In Fig. 1, the calculated one-quasiproton spectra of nuclei of α -decay chain of ²⁹¹Ts are shown. The α decays of ²⁸⁷Mc, ²⁸³Nh, ²⁷⁹Rg, and ²⁷⁵Mt were experimentally observed in one α -decay chain of ²⁸⁷Mc [1]. The α particle from ²⁷¹Bh was missed. In Fig. 1, we marked the most probable α decays from the ground and isomeric states. The calculated energies of the majority of these decays are in a good agreement with the experimental data. The α decay of ²⁸⁷Mc populates the 9/2⁻[505] state of ²⁸³Nh from which the γ transitions occur into the 11/2⁺[625] state or into the ground state (through the 7/2⁻[503] state). If the isomeric state 11/2⁺[625] in ²⁸³Nh lives longer than 7 ms, the α decay from this state can occur.

As seen in Fig. 1, the α decay of ²⁷⁵Mt is hindered because the corresponding one-quasiparticle states in the daughter nucleus have high energies. The lifetimes with respect to the spontaneous fission for neighboring eveneven nuclei ²⁷⁴Hs and ²⁷⁶Ds are estimated [15] as 5.8 and 2.1 s, respectively. Thus, the spontaneous fission of ²⁷⁵Mt needs more than 3.5 s. The α decay occurs faster, $T_{\alpha} < 1$ s, even with $Q_{\alpha} = 9.61$ MeV. The α decay of ²⁷⁵Mt can also occur into the first rotational state 11/2⁺ of ²⁷¹Bh. In this case,

Fig. 1. Calculated energies of low-lying one-quasiproton states in the indicated nuclei of the α -decay chain of ²⁹¹Ts. The calculated values of Q_{α} are for the ground state-to-ground state α decay. The most probable α decays are traced by arrows. The experimental value of Q_{α}^{\exp} are from Ref. [1].

the calculated Q_{α} value would be about 10.28 MeV and $T_{\alpha} > 15$ ms. Note that we underestimate Q_{α} within 0.2 MeV for ²⁷⁵Mt in comparison with the experimental data [1].

The α decay of ²⁷¹Bh occurs in about 9.3 s to ²⁶⁷Db. The α decay of ²⁶⁷Db would need about 35 h that is too long in comparison with the time of spontaneous fission which occurs in about 1 h [1]. Therefore, the α -decay chain of ²⁹¹Ts or ²⁸⁷Mc is terminated by the spontaneous fission of ²⁶⁷Db.

The calculated one-quasiproton spectra of the nuclei of the α -decay chain of ²⁹³Ts are presented in Fig. 2. The possible α decays from the ground and isomeric states are marked. The $1/2^{-}[510]$ state can be the isomeric state in ²⁹³Ts. If it lives longer than 30 ms with respect to γ transitions, the α decay occurs from this state. The nucleus ²⁸⁹Mc seems to have no one-quasiparticle isomeric states (long living states with respect to γ decay) and emits α from the ground state to populate the $9/2^{-}[505]$ state of ²⁸⁵Nh. The γ transitions from this state feed the ground state and the $11/2^{+}[615]$ isomeric state. The lifetime of ²⁸⁵Nh in this isomeric state seems to be shorter than the time $T_{\alpha} > 0.7$ s for α decay. Thus, the α decay of ²⁸⁵Nh likely occurs from the ground state into the $3/2^{-}[512]$ state of ²⁸¹Rg from which M1 transition occurs into the ground state.

Fig. 2. The same as in Fig. 1, but for the α -decay chain of ²⁹³Ts. The experimental value of Q_{α}^{\exp} are from Ref. [2].

The α decay of ²⁸¹Rg could populate the 1/2^{-[510]} isomeric state of 277 Mt. This state is at the energy of 0.34 MeV and has more than 10%admixture of $1/2^{-521}$ and $1/2^{-530}$ states. The calculated value of Q_{α} for the ground state-to-ground state α decay is 0.46 MeV smaller than in Ref. [16]. Taking into account the structures of $1/2^{-521}$ states, we estimate $T_{\alpha} = 8.1$ s for ²⁸¹Rg. If in ²⁷⁷Mt the $1/2^{-}[521]$ state would be 0.25 MeV higher in energy, then $T_{\alpha} = 44$ s. The spontaneous fission half-life $T_{\rm sf}$ of 281 Rg can be estimated as the average of the values calculated [15] for two neighboring even-even nuclei ²⁸⁰Ds and ²⁸²Cn, and increased by the factor taking the effect of odd nucleon into account. For ²⁸¹Ds, this factor is found to be about 15. Thus, for 281 Rg T_{sf} is estimated as 0.6 s. This value is about 10 times smaller than T_{α} found and ²⁸¹Rg likely undergoes to spontaneous fission. However, the estimated $T_{\rm sf}$ is smaller than the experimental value 38 s [2] which is comparable with the calculated T_{α} . The half-lives with respect to the spontaneous fission are about 11 s for 283 Cn and 281 Ds with N = 171. In this nuclei, the spins of the ground states are 1/2 as in the case of 281 Rg (N = 170). As found, in Ds and Cn, the value of T_{sf} increases by about 2 orders of magnitude when the neutron number changes from 169 to 171 and from 170 to 172, respectively. The calculated $Q_{\alpha} = 9.906$ and 9.345 MeV [14] for ²⁸¹Rg and ²⁸²Rg, respectively. The decrease of Q_{α}

with increasing N indicates the approaching the neutron shell closure. In 282 Rg, we expect $T_{\alpha} \approx 25$ s and $T_{\rm sf} \approx 110$ s, *i.e.* about 10 times larger than for neighboring even-odd nuclei 283 Cn and 281 Ds. Thus, 282 Rg undergoes α decay as found in Ref. [2].

The one-quasiparticle spectra are shown in Figs. 3 and 4 for the nuclei of α -decay chain of ²⁸⁸Mc. There are four pseudospin doublets located near the Fermi surface in the nuclei considered. Namely, two neutron doublets 5/2[613]-3/2[611], 11/2[606]-9/2[604] and two proton doublets 7/2[503]-9/2[505], 1/2[510]-3/2[512]. For some isotopes, the level 3/2[611] is out of the scale in Fig. 3. In our calculations, the splitting of the neutron doublet 5/2[613]-3/2[611] varies from 440 to 690 keV. In the single-particle scheme presented in Ref. [17], the splitting of this doublet is approximately equal to 650 keV. A splitting of the neutron doublet 11/2[606]-9/2[604] calculated with the TCSM is unexpectedly large. It exceeds 2 MeV, although this splitting is approximately equal to 1.3 MeV in Ref. [17]. The splitting is rather small for the proton pseudospin doublets calculated with the two-center potential. For the proton doublet 7/2[503]-9/2[505], it varies from 10 keV in 288 Mc to 150 keV in 268 Db. The single-particle spectrum in Ref. [17] shows the splitting of 835 keV. The splitting of the proton pseudospin doublet 1/2[510]-3/2[512] calculated with the TCSM is equal to 40–60 keV in all considered nuclei. The spectrum shown in Ref. [17] demonstrates a splitting of this doublet approximately equal to 220 keV.

Fig. 3. The one-quasineutron spectra calculated with the TCSM for the nuclei of the α -decay chain of ²⁸⁸Mc. The Nilsson asymptotic quantum numbers are indicated.

Fig. 4. The same as in Fig. 3, but for the one-quasiproton spectra.

Besides the ground state, the possible isomeric state $n5/2[602] \otimes p9/2[505]$ is populated with almost the same probability in the evaporation residue ²⁸⁸Mc. The most favorable α decays from these states to the corresponding states (Fig. 5) of daughter nucleus ²⁸⁴Nh have $Q_{\alpha} = 10.62$ and 10.47 MeV what is in a good agreement with the experimental data [3, 7].

In ²⁸⁴Nh, the M1 transition $p9/2[505] \rightarrow p7/2[503]$ is estimated to be four orders of magnitude slower than the E1 transition $p9/2[505] \rightarrow p11/2[615]$. This E1 transition follows by E2 transition in about 5 ms (Fig. 5). So, the α decay of ²⁸⁸Mc with $Q_{\alpha} = 10.47$ MeV would lead to the population of isomeric state $n1/2[611] \otimes p11/2[615]$ in ²⁸⁴Nh. The α decay of ²⁸⁸Mc with $Q_{\alpha} = 10.62$ MeV follows by the E1 transition ($T_{\gamma} \approx 30$ ps) to the possible isomeric state $n13/2[716] \otimes p11/2[615]$. The population of the ground sate in ²⁸⁴Nh because of the consequence of slower M1 and E2 transitions is unlikely but cannot be excluded. The population of the $n1/2[611] \otimes p3/2[512]$ state from the $n5/2[613] \otimes p9/2[505]$ state via M1, and two E2 transitions over the states $n5/2[613] \otimes p7/2[503]$ and $n5/2[613] \otimes p3/2[512]$ is unlikely because it requires a longer time. As found, the α decay of ²⁸⁴Nh from the $n1/2[611] \otimes p3/2[512]$ state with $Q_{\alpha} = 10.19$ MeV does not populate isomeric states in ²⁸⁰Rg.

Fig. 5. Decay scheme of ${}^{288}\text{Mc} \rightarrow {}^{284}\text{Nh}$ resulting from the calculations with the TCSM model. Energies of two-quasiparticle levels are in keV, Q_{α} values are in MeV. The most probable gamma transitions are marked.

As shown in Fig. 6, the α decays of ²⁸⁴Nh populate the states in ²⁸⁰Rg which are very close in energy to the ground state. The modified TCSM results in a very dense quasiparticle spectrum for ²⁸⁰Rg because there is no reduction of the effective nucleon mass as in the self-consistent calculation. The α decay of ²⁸⁴Nh from the $n13/2[716] \otimes p11/2[615]$ state with $Q_{\alpha} = 10.13$ MeV (Fig. 6) populates the same state in ²⁸⁰Rg which

Fig. 6. The same as in Fig. 5, but for the decay $^{284}Nh \rightarrow ^{280}Rg$.

seems to be isomeric. The α decays with $Q_{\alpha} = 10.35$ and 10 MeV follow by the low-energy E2 and M1 transitions, respectively, to the corresponding isomeric states. Because this E2 transition requires about 2 s, the $n1/2[611] \otimes p11/2[615]$ state is considered in the α decay of ²⁸⁰Rg as well. The detailed analysis of possible α decays of nuclei ²⁸⁸Mc, ²⁸⁴Nh, ²⁸⁰Rg, ²⁷⁶Mt, and ²⁷²Bh is presented in Ref. [18].

3. Proton shell closure in heaviest nuclei

As seen in Fig. 7, the calculated Q_{α} are in a good, within 0.3 MeV, agreement with the available experimental data. The shell effects at Z = 114and N = 172-176 provide rather weak dependence of Q_{α} on N. The strong role of the shell at N = 184 is reflected in the well-pronounced minimum of Q_{α} . The jump of Q_{α} values at transition from Z = 120 to Z = 122indicates a rather strong shell effect at Z = 120. So, the TCSM results in the proton shell closure at Z = 120. The values of the shell correction $E_{\rm sh}$ are shown in Fig. 8 for the nuclei of α -decay chain starting from $^{302}120$. The shell effects predicted for these nuclei in Ref. [8] are weaker.

Fig. 7. Calculated α -decay energies (symbols connected by lines) are compared with available experimental data (symbols) [1, 2, 4, 6] for nuclei with $Z \ge 107$.

The Schrödinger equivalent single-particle potential can be obtained [19] from the self-consistent calculations based on the non-relativistic [20] and relativistic [21] mean-filed approaches. As found, these different approaches result in almost the same single-particle potential in the Woods–Saxon form with the depths $V_0 = -59 \pm 30 \frac{N-Z}{N+Z}$ for neutrons and protons. The shell corrections calculated with the microscopic–macroscopic approach using this potential are also presented in Fig. 8. As seen, the self-consistent approaches produce stronger shell effects than the TCSM. However, the weak variation of $E_{\rm sh}$ at Z = 116-120 is similar to that in Ref. [8].

Fig. 8. Shell corrections to the biding energies of the nuclei of α -decay chain of $^{302}120$. The results of the TCSM [14] are shown by solid squares connected by solid line. The results of Ref. [8] are presented by solid circles. The values of $E_{\rm sh}$ obtained for the Woods–Saxon potential extracted from the self-consistent microscopical calculations are shown by open circles.

4. Summary

The calculations with the modified TCSM result in realistic quasiparticle spectra and reveal quite strong shell effects at Z = 120. So, our macroscopicmicroscopic treatment qualitatively leads to the results close to those in the mean-field treatments. Two self-consistent approaches provide similar Schrödinger equivalent single-particle potentials in which the shell effects at Z = 120 are stronger than at Z = 114. Peculiarities of quasiparticle spectra could be responsible for the termination of α -decay chain by spontaneous fission.

This work was supported in part by RFBR, DFG, and NSFC. The Polish–JINR (Dubna) Cooperation Programmes are gratefully acknowledged.

REFERENCES

- [1] Yu.Ts. Oganessian, J. Phys. G 34, R165 (2007).
- [2] Yu.Ts. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010).
- [3] Yu.Ts. Oganessian et al., Phys. Rev. C 87, 014302 (2013).
- [4] S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007).
- [5] W. Loveland *et al.*, *Phys. Rev. C* 66, 044617 (2002); K.E. Gregorich *et al.*, *Phys. Rev. C* 72, 014605 (2005).
- [6] L. Stavsetra et al., Phys. Rev. Lett. 103, 132502 (2009).
- [7] D. Rudolph et al., Phys. Rev. Lett. 111, 112502 (2013).
- [8] I. Muntian, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 32, 691 (2001);
 34, 2141 (2003); I. Muntian, S. Hofmann, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 34, 2073 (2003); Phys. At. Nucl. 66, 1015 (2003);
 A. Parkhomenko, I. Muntian, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 34, 2153 (2003); A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).
- [9] G.G. Adamian, N.V. Antonenko, W. Scheid, Eur. Phys. J. A 41, 235 (2009).
- [10] R.-D. Herzberg, P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).
- [11] J. Maruhn, W. Greiner, Z. Phys. 251, 431 (1972).
- [12] G.G. Adamian, N.V. Antonenko, W. Scheid, *Phys. Rev. C* 81, 024320 (2010); G.G. Adamian, N.V. Antonenko, S.N. Kuklin, W. Scheid, *Phys. Rev. C* 82, 054304 (2010).
- [13] G.G. Adamian *et al.*, *Phys. Rev. C* 84, 024324 (2011).
- [14] A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, W. Scheid, *Phys. Rev. C* 85, 014319 (2012).
- [15] R. Smolańczuk, J. Skalski, A. Sobiczewski, *Phys. Rev. C* 52, 1871 (1995).
- [16] A. Sobiczewski, Acta Phys. Pol. B 41, 157 (2010).
- [17] A. Bohr, B. Mottelson, Nuclear Structure, Benjamin, NY 1975, vol. II.
- [18] A.N. Bezbakh et al., Phys. Rev. C 92, 014329 (2015).
- [19] G.G. Adamian *et al.*, to be published.
- [20] F. Hofmann, H. Lenske, *Phys. Rev. C* 57, 2281 (1998).
- [21] J. Meng et al., Prog. Part. Nucl. Phys. 57, 470 (2006).