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A recently developed Fourier shape parametrisation has been used to
evaluate the potential energy surfaces of rotating nuclei including, in partic-
ular, the non-axiality degree of freedom. Our analysis has been performed
in a 4D deformation space, but the effect of two additional deformation
degrees of freedom of higher multipolarity has been taken into account.
The calculations were performed using the Lublin–Strasbourg Drop model
(LSD), but without taking microscopic correction into account. No sign of
a Poincaré shape transition has been observed.
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1. Introduction

An efficient and low-dimensional description of shapes of rotating and
fissioning nuclei is one of the most difficult tasks nuclear physicists have
been confronted with since the first paper of Bohr and Wheeler on nuclear
fission theory [1]. It is rather well-known that the classical expansion of
the nuclear surface in terms of spherical harmonics as proposed by Lord
Rayleigh in the 19th century, is not rapidly convergent (confer e.g. [2, 3]),
and that one needs at least 14 first terms of that expansion in order to obtain
an accurate profile of the liquid-drop fission barrier from its ground state,
through the saddle up to the scission point. A reasonably good description
of the fission barrier is obtained using the Funny-Hills (FH) parametrisa-
tion developed by Brack et al. [4] and its extended version known as the
Modified Funny-Hill (MFH) shapes developed in the Lublin–Strasbourg col-
laboration [5]. Due to the limited class of nuclear shapes produced by both
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these parametrizations, it is, however, practically impossible to evaluate the
accuracy of the energy of fissioning nuclei obtained in this way. The effect
of rotation makes the picture even more complicated since the set of defor-
mation parameters should be then able to describe the Maclaurin, Jacobi
and Poincaré shape transition.

2. Theoretical model

In a majority of papers devoted to Jacobi and Poincaré transitions, one
describes the shapes of deformed nuclei using the Rayleigh expansion. It
has, however, been shown in Ref. [2] that in the above expansion, one needs
to include all terms up to λ = 14 in order to describe properly the shape of
the fission barrier from its saddle point up to vicinity of the scission config-
uration. A similar observation was also made by Mazurek et al. in a paper
devoted to the nuclear Jacobi and Poincaré transitions [3]. An alternative
way of describing nuclear shapes in cylindrical coordinates (ρ, ϕ, z) is given
by the rapidly converging Fourier expansion of the square of the distance ρs
from the z-axis to the surface [6]
ρ2s (z, ϕ)

R2
0

=
∞∑
n=1

{a2n cos[(2n−1)u]+a2n+1 sin(2nu)}
1− η2

1+η2+2η cos(2ϕ)
, (1)

where u = π
2
z−zsh
z0

, −z0 + zsh ≤ z ≤ z0 + zsh, and z0 = R0c. The shift
coordinate zsh ensures that the centre of mass is located at the origin of
the coordinate system, while the volume conservation condition gives the
following relation between the elongation coordinate c of the nucleus and
the Fourier expansion coefficients c = π/(a2 − a4/3 + a6/5− . . .)/3.

In Eq. (1), one has made the simplifying assumption that the cross sec-
tion perpendicular to z-axis has the form of an ellipsoid with half-axis a
and b, having the same surface area as in the axial symmetric case, i.e.
ρ2 = a b. The non-axial deformation parameter η is defined as

η =
b− a
a+ b

. (2)

The LD fission path goes towards smaller a2 and larger negative values of a4,
which is somewhat strange. One, therefore, introduces physically more in-
tuitive collective coordinates which ensure, in addition, an optimal presen-
tation of the potential energy landscape
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where a(0)n is the value of the coordinate an for the spherical shape: a2 =
1.03205, a4 = −0.03822, and a6 = 0.00826.
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The potential energy surfaces of deformed rotating nuclei were evaluated
using the rotating Lublin–Strasbourg Drop (LSD) model [7]

M(Z,N ; def) = ZMH +NMn − belec Z2.39
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where the functions Bsurf(def), Bcur(def) and BCoul(def) describe respec-
tively the nuclear surface and the Coulomb energy relative to the spherical
shape. The change with deformation of the congruence energy is taken ac-
cording to Ref. [8]. All parameters of the LSD model are the same as in
Ref. [7]. The nuclear radius constant r0 = 1.2 fm was taken for calculating
the rigid-body moment of inertia Jrig. Evaluating the rotation energy we
have assumed in the following that rotation always takes place around an
axis of largest moment of inertia.

3. Results

The calculations were performed for several nuclei from different mass
regions. In what follows, we present the results for one light and one mid-
mass nucleus, namely 46Ti and 120Cd having respectively the fissility pa-
rameter x = 0.23 and 0.39, smaller or nearly equal to the Businaro–Gallone
value [9]. For these nuclei, the LD saddle point shows an octupole defor-
mation when rotation is not present. According to previous investigations
(see e.g. Refs. [3, 10], there is a certain chance to observe the Poincaré tran-
sition (i.e. pear-like stationary shapes) in such nuclei.

The macroscopic potential energy surfaces (PES) of a rotating 46Ti nu-
cleus is presented in Fig. 1. It is seen that already at spin L = 20 a visible
Maclaurin transition appears: the rotating nucleus becomes oblate deformed
(q2 = −0.29, η = 0). Some kind of “relection symmetry” of this minimum
is also visible around the point (q2 = 0.15, η = 0.10) which, according to
Eq. (1), describes simply the same shape of the nucleus but oriented differ-
ently in space. At L = 28 ~, 46Ti is still oblate deformed, while at L = 30 ~
the Jacobi transition to a triaxial shape can be observed.

Similar PESs for 46Ti but for higher angular momenta L = 40, 46 and
48 ~ are presented in Fig. 2. It is visible in the top-left figure that at spin
L = 40 ~, the nucleus 46Ti becomes prolate deformed (q2 = 1.8) and axially
symmetric (η = 0). The top-right figure shows, for the same angular momen-
tum, the cross section of the PES along the (q2, q3) plane. The minimum
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Fig. 1. Potential energy landscape of 46Ti in the (q2, η) plane for the low angular
momenta L = 2, 20, 28, and 30 ~.

corresponds to q3 = 0, i.e. no pear-like deformation is observed. Taking
higher multipolarities q4 and q6 into account does not change this picture
what is visible in the bottom-left figure in which the PES cross section is
calculated at the L = 40 ~ ground state (q2 = 1.8, q3 = 0, η = 0). At
L = 42 ~ (bottom-right figure), the fission barrier of 46Ti becomes smaller
and the nucleus finally becomes unstable against centrifugal fission for very
high L values.

Fig. 2. The same as in Fig. 1 but for higher angular momenta.
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The majority of properties of the PESs of rotating 46Ti observed in
Figs. 1 and 2 remains valid for 120Cd with the only difference that the
magnitude of the angular momentum changes. In Fig. 3, the pronounce

Fig. 3. Potential energy landscape of 120Cd in the (q2, η) plane for the low angular
momenta L = 0, 30, 68, and 74 ~.

Maclaurin transition is visible for spins in the interval of 30 ~ ≤ L ≤ 68 ~,
while at L = 74 ~ (bottom-right figure), the Jacobi shape transition is ob-
served. Around spin L = 90 ~, the nucleus 120Cd becomes axially symmetric
and prolate what can be seen in Fig. 4. Similar to the case of 46Ti, this
minimum is stable against pear-like (q3), as well as higher-multipolarity (q5

Fig. 4. The same as in Fig. 3 but for higher angular momenta.
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and q6) deformations q6. The largest angular momentum at which 120Cd
survives is L = 98 ~. For higher spins, the macroscopic fission barrier com-
pletely disappears.

4. Conclusions

The following conclusion can be drawn from our investigations:

— The new Fourier shape parametrization of deformed nuclei is very
rapidly converging, that n = 6 is good for applications.

— A 4D space consisting of: q2, q3, q4 and η deformation parameters is
sufficient to describe Jacobi and Poincaré transitions in rotating nuclei.
The role of higher-order multipolarity parameters is negligible.

— No evidence of a Poincaré transition is found in rotating nuclear liquid
drops.

Since our investigation was preformed using the rotation liquid-drop model,
the inclusion of shell effects may slightly modify this picture for certain
nuclei.
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