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The aim of this work is to show the importance of the center-of-mass
motion generated by the octupole modes and connected with these induced
dipole deformations on 156Gd nucleus in its ground-state configuration.
The investigation is performed within a quadrupole–octupole collective ap-
proach in the presence of rotational motion.
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1. Introduction

The octupole deformations of the nucleus induces the change of the
center-of-mass position. Therefore, the quadrupole and octupole collective
vibrations and rotations considered in the current model result with a kind of
periodic translational motion of the nucleus as a whole. The kinetic energy
of such a mode is not explicitly taken into account in the Hamiltonian.

We examine here, on average, an effect of the center-of-mass motion
for the B(E1) and B(E2) reduced probabilities, by considering the dipole
α1ρ, ρ = {−1, 0,+1} deformations, induced by coupling of the quadrupole
α2µ, µ = {−2, 0, 2} and octupole α3ν , ν = {−3,−2, . . . , 3} variables describ-
ing the nuclear surface in the spherical coordinates

R(ϑ, ϕ) = R0c(α)

[
1 + α10Y10(ϑ, ϕ) + α20Y20(ϑ, ϕ) + α30Y30(ϑ, ϕ)

+2α11Re(Y11(ϑ, ϕ)) + 2α22Re (Y22(ϑ, ϕ)) + 2

3∑
µ=1

α3µRe(Y3µ(ϑ, ϕ))

]
. (1)
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Till now, dipole deformation parameters are known to be mainly respon-
sible for the center-of-mass motion. Nevertheless, as shown in [1], their large
enough values are capable to significantly change the shape of nuclear body,
affecting the total nuclear potential energy surface as well.

2. Collective Hamiltonian in intrinsic frame
An usual way of defining a vibrational–rotational collective models ac-

counts on choosing the collective Hamiltonian with respect to the laboratory
frame using the laboratory variables, e.g. αlab

λµ and then, transforming it to
the intrinsic coordinate system.

The procedure according to this prescription was studied e.g. in [2] which
results with a consistent formula for quadrupole–octupole collective Hamilto-
nian in the intrinsic frame. Such Hamiltonian, due to its complexity, occurs
to be difficult to apply in practice.

Contrarily to the above idea, we build the vibrational–rotational Hamil-
tonian already in the intrinsic frame applying a standard adiabatic approx-
imation which allows for the separation of the vibrational and rotational
modes. Such separation is generally possible due to significantly different
(by 2–3 orders of magnitude) energy scales of both collective modes.

We propose even more simplified approach in which quadrupole and oc-
tupole vibrational motions are totally decoupled in the kinetic energy term.
This approximation seems to be reliable since the off-diagonal components
of the mass tensor, responsible for such coupling, are about one order of
magnitude smaller than the smallest value of the diagonal, quadrupole or
octupole mass-tensor components in the neighborhood of the equilibrium
configuration.

Neglecting this coupling, we determine two independent mass tensors:
first, for pure quadrupole motion admitting that the octupole deformation
is fixed to zero and the second, corresponding to the octupole motion, for
which the quadrupole configuration corresponds to the ground state.

Now, let us define the collective Hamiltonian in question. Within the
above approximation, a realistic, quantized quadrupole–octupole-vibrational
collective Hamiltonian with varying mass parameters and moments of inertia
may be written as

Ĥcoll(α2, α3, Ω) =
−~2

2

{
1√
|B2|

2∑
νν′=0

∂

∂α2ν

√
|B2|

[
B−1

2

]νν′ ∂
∂α2ν′

+
1√
|B3|

3∑
µµ′=0

∂

∂α3µ

√
|B3|

[
B−1

3

]µµ′ ∂
∂α3µ′

}
+ Ĥrot(Ω) + V̂ (α2, α3) , (2)

where α2 and α3 describe symbolically the subspaces of the quadrupole and
octupole variables, B2(α2), B3(α3) denote the quadrupole and octupole mi-
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croscopic mass tensor, respectively, and |B2| = detB2(α2), |B3| = detB3(α3).
Those symmetric mass tensors are calculated using the cranking approxima-
tion [3]. Since the experimental ground-state energy spectrum as well as the
sequence of B(E2)s in 156Gd nucleus indicate that the ground state of this
nucleus is stiff against the quadrupole deformation, the coupling of rotational
and vibrational modes seems to be weak. In the first approximation, the ab-
sence of the corresponding term in Hamiltonian (2) is therefore justified. In
this work, an effective approximation leading to the collective potential in
the six-dimensional collective space of {α2, α3} variables is the macroscopic–
microscopic model. This model, for a reasonable choice of single-particle
potential, pairing interaction and the smooth liquid-drop-type energy for-
mula, is able to give reliable estimates of the potential energy landscapes
V̂ (α2, α3). In what follows, one applies the Woods–Saxon potential [4] with
the so-called universal set of parameters [5], refitted to the newest single-
particle data [6]. The leading liquid-drop energy term is developed here by
the Lublin–Strasbourg Drop formula (LSD) [7]. The shell energy correc-
tion is calculated via traditional Strutinsky approach [8]. Eventually, the
pairing energy correction is given by the particle number projected BCS
approach [9].

As already mentioned, since the energy scales of the vibrational and
rotational modes are significantly different, they are assumed to be fully
decoupled. The resulting rotational term Ĥrot(Ω) depends, therefore, only
on the Euler angles and the static shape of the nucleus corresponding here
to the ground state. Since the rotational part of the Hamiltonian has also to
be scalar with respect to the symmetrization group Ḡs [10], it is sensible to
construct it out of the irreducible tensors of Ḡs symmetry group [11]. Such
tensors with respect to the intrinsic SO(3) group are built of the spherical
components of the angular momentum operators defined in the body-fixed
frame.

The basis in which the Hamiltonian is diagonalized contains, in both the
quadrupole and octupole parts, 0-, 1-, 2-, 3-phonon harmonic-oscillator one-
dimensional solutions of positive or negative parity, while in the rotational
part-Wigner functions of Euler angles, see e.g. [12].

3. Center-of-mass motion and electric transition operators

The center-of-mass vector ~rCM = ~rCM(α1µ, α20, α22, {α3ν}) of a nucleus
of total mass M is defined as

~rCM =
1

M

∫
V

~rρ(~r )d3~r , (3)

where ρ(~r ) is nuclear density distribution. The ~rCM is the combination
of four order polynomials in α1µ with the coefficients depending on the
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remaining quadrupole and octupole deformations. These polynomials are
solved with respect to α1µ variables by the condition ~rCM = 0

α1µ = α1µ(~rCM = 0, α20, α22, {α3ν}) . (4)

Obtained in such a way the so-called induced α1µs as a function of α2νs and
α3µs, inserted into the definition of the nuclear surface (1), ensure that the
nuclear surface is defined in the center-of-mass frame. The above consider-
ation points also out that used here quadrupole and octupole αλµ deforma-
tions are the only independent variables of this approach.

The impact of the dipole deformations on the properties of atomic nuclei
are not often discussed in the literature. For example, in Refs. [1, 13], the
influence of α1ν on the potential energy surface of superdeformed configu-
rations in thorium isotopes is discussed. As we can infer from Fig. 1, the
total macroscopic–microscopic nuclear energy in vicinity of the ground state
point is almost insensitive to the presence of dipole α10 deformation varied in
substantially wide range, i.e. between −0.5 to 0.5. It means that, in a crude
approximation, the major effect of this dipole deformation is the translation
of the nucleus as a whole along OZ-axis without significant modification of
the nuclear surface. The same can be said about the influence of non-axial
α11 dipole deformation.
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Fig. 1. Total nuclear energy as a function of axial octupole α30 and axial dipole α10

deformations for the ground-state configuration of 156Gd nucleus. Other non-axial
octupole deformations as well as non-axial dipole α11 are equal to zero.

The further increase of α10 values leads to visibly more and more compact
nuclear shapes and, as a result, notable decrease of energy. The non-axial
deformation, in turn, is discovered to be responsible for creating “necked”
shapes. Such a feature may be interesting since even compact quadrupole–
octupole shape with the presence of large values of α11 can split into two
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pieces. Now, let us pass to the solutions of Eq. (4) on the six-dimensional
grid of {α20, α22, α3µ} deformation parameters. Initially, for each point of
this mesh, the vector of the center-of-mass shift ~rCM is determined. In the
next step, this shift is expressed in terms of dipole deformations α10 and α11

which, as above mentioned, are mainly responsible for producing such shift.
The parameters α10 and α11 induced by couplings of, in general, all con-

sidered six degrees of freedom are displayed in Figs. 2 and 3. Nevertheless,
more detailed studies of αλµ ⊗ αλ′µ′ tensor couplings reveal that parameter
α10 is, in its leading part, induced by the second order couplings of octupole
axial α30 with α20 and α32 with α22. Similarly, α11 appears due to the
couplings of α20 with α31 as well as α22 with α31 and/or α33.
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Fig. 2. Dependence of dipole axial α10 on the octupole and quadrupole planes:
axial (α20,α30) and non-axial (α22,α32) deformation parameters.

To sum up, in Fig. 2, we can observe that the contribution to the to-
tal induced dipole deformation α10 due to α22 ⊗ α32 coupling is stronger
than the one received from axial deformations α20 ⊗ α30. If, as shown in
Fig. 3, induced α11 parameter is considered, it is mainly contributed by
the couplings of α22 ⊗ α33 and α20 ⊗ α31, while significantly weaker by
α22 ⊗ α31 one. Clearly, in a chosen full collective state, real contribution of
above quadrupole–octupole couplings is decided by the quadrupole–octupole
phonon structure of the corresponding wave function.

3.1. Impact of dipole deformations on E1 transitions

Having solved the corresponding Schrödinger equation with Hamilto-
nian (2), we can calculate, as the next step, the inter-band dipoleB(E1) tran-
sitions between the ground-state and the octupole, negative-parity bands.
In the single-particle picture, it is commonly known that dipole transitions,
contrary to the quadrupole B(E2)s, are strongly affected by mutual distance
between centers of mass of proton (charge) and neutron mass distributions.
In the presented collective approach, both those centers of mass are assumed
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Fig. 3. Dependence of dipole non-axial α11 on the combination of the quadrupole
and octupole (α20,α31), (α22,α31) and (α22,α33) deformation parameters.

to stay in the same point, thus the center-of-mass shift of the total mass dis-
tribution with respect to the onset of the coordinate system seems to be the
appropriate quantity. Such assumption emerges directly from the natural
assumption that considered average nuclear surface R(ϑ, ϕ) is common for
proton and neutron distributions.

According to the methodology outlined in Eqs. (3) and (4), the latter
can be expressed in terms of induced α1ν deformations of the nuclear body.

For the nucleus of A nucleons and Z protons and effective radius of
proton distribution R0 ≈ 1.2A1/3, the E1 transition operators expressed in
the body-fixed frame, Q̂1ν , are given in the form of the second order intrinsic
electric multipole moment operators as [14]

Q̂
(intr)
1ν =

3ZeR0

4π

{
α1ν +

λ+ 2

2
√

4π

3∑
λ1=2,λ2=2

√
(2λ1 + 1)(2λ2 + 1)

3

×(λ10λ20|10)(αλ1 ⊗ αλ2)1ν

}
, (5)
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where λ1, λ2 are the multipolarities of the intermediate αλ1µ1 and αλ2µ2
tensors used in the tensor coupling. If one wishes to investigate the B(E1)
probabilities without the center-of-mass shift effects, the induced value of
the dipole deformation, α1ν , in Eq. (5) should be put as zero.

The obtained inter-band dipole B(E1) probabilities, with and without
the presence of the induced by the quadrupole–octupole coupling α1ν vari-
ables in the transition operator, are listed in Table I. The experimental data
for 156Gd are taken from Ref. [15].

TABLE I

The predicted and measured (Exp.) E1 reduced transition probabilities between
positive- and negative-parity bands. Symbols α3µ specify the type of the band-head
one-phonon excitations. Values in parentheses are obtained without the induced
dipole α1ν deformation in the transition operator of Eq. (5).

Transition Theory B(E1) [10−3 W.u.]

Iπi → Iπj α30 α31 α32 α33 Exp.

3− → 2+1 58 37 0.36 0.006 0.98(21)
(33) (14) (0.23) (0.0056)

3− → 4+1 81 51 0.51 0.0087 0.77(16)
(46) (20) (0.33) (0.0083)

5− → 4+1 66 42 0.41 0.0072 0.85+0.19
−0.38

(38) (17) (0.27) (0.0071)

5− → 6+1 81 51 0.53 0.0081 0.64+0.14
−0.29

(46) (21) (0.33) (0.0078)

Comparing the above four negative-parity model bands, we can observe
that the band based on the tetrahedral-like α32 excitation reproduces within
the error bars the two of measured four experimental B(E1) values. The
B(E1, 5− → 4+1 ) transition is slightly out of the confidence interval whereas
the B(E1, 3− → 2+1 ) transition is too small by a factor of two. This in-
teresting feature of the tetrahedral negative-parity states, which generates
the closest to the experimental B(E1) probabilities clearly indicates that, in
fact, all four octupole degrees of freedom can be relevant to understand the
complexity of negative-parity bands. If, for example, the ground-state (final)
vibrational band-head is described by the 0-phonon structure, the order of
magnitude of the E1 transition matrix element is set mainly by the ampli-
tudes of the α30 and α31 1-phonon excitations in the initial negative-parity
state. The presence of the other two, α32 and α33, octupole excitations af-
fects the value of this matrix element only insignificantly. As investigated in
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the above mentioned tetrahedral state, the overall contribution of both the
α30 and α31 modes does not exceed 10%. The other meaningful conclusion
from Table I is that if the induced dipole deformations are not present in the
transition operator, the corresponding B(E1) probabilities become, on av-
erage, twice as much too low for α30-, α31-, α32-based one-phonon octupole
model bands compared to values obtained with induced α1ν variables, see
numbers in parentheses in Table I. Another, not presented here, study indi-
cates that the band based on α33 structure lies around 1 MeV higher than the
lowest one, thus it is out of the interest. Hence, the center-of-mass problem
cannot be neglected when calculating the collective dipole E1 transitions.
On the contrary, for the quadrupole intraband E2 transitions, this effect is
investigated to be practically non-essential.
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laboration under contract No. 04-113 and by the Polish National Science
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