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Recent shell-model advances in the mass region above the doubly closed
core 1328n are reported in the present work. Using an effective interaction
based on the N3LO potential, the low-lying spectra, E2 and M1 transition
strengths are calculated for the following nuclei: 134:136,138 ¢ 136,138,140 o
138,140,142,  140,142,144Ce apnd 142:144,146Nd. We focus in the discussion on
the collectivity in the N = 86 isotones characterized by development of
triaxial v bands.

DOI:10.5506 / APhysPolB.48.587

1. Introduction

The mass region above 32Sn core represents an interesting area for ex-
perimental [1-8] and theoretical [9-13] nuclear structure research. In our
earlier shell-model works [1, 12, 13], we have calculated the energy levels,
the isomeric transitions and the masses of 134136:138,140Qy, -~ Tn the present
work, we have progressed in our investigation of this region by describing
the spectroscopic properties of even—even chains of nuclei with 52 < Z < 60
and 82 < N < 86 using an effective interaction based on the N3LO potential
(named N3LOP) reported in Section 3.1. The presence of the collectivity in
the N = 86 isotones is widely discussed in Section 3.2, where the quadrupole
properties sign the presence of triaxial v bands.

2. Shell-model overview

Thereafter we carry shell-model calculations in the natural valence space
spanned by 1f7/9,0hg/2,1f5/2,2p3/2,2p1/2,0013/2 orbitals for neutrons and
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097/2, 1ds5 /2, 1d3/2,251/2,0hy1 /5 orbitals for protons, above an inert closed
13281 core (hereafter denoted by r4h-r5i [14]). The numerical treatment
of such a valence space is very challenging. We face, for example, matrix
diagonalizations with basis dimensions up to ~ 2.10!! Slater determinants
for the case of 16Nd. The calculations are carried out using Antoine and
Nathan shell-model codes [15, 16].

As a starting point, we have employed a realistic interaction derived from
chiral effective field theory potentials [17] noted by N3LO. Its repulsive short
range has been renormalized with the use of the so-called low momentum
potential Vigw i procedure, defined within a cutoff A = 2.2 fm~!. It is then
adapted to the model space by many-body perturbation theory techniques,
including all the Q—box folded diagrams up to the second order [18]. The
corresponding neutrons and protons single-particle energies are fixed from
13381 and !33Sb experimental values [19)].

The initial N3LOP realistic interaction fails in reproducing the isomeric
transition strength in '3%Sn, and we have reduced the diagonal and off-
diagonal f7/; pairing matrix elements of the neutron-neutron part. This
was already identified as a seniority mixing effect [1, 12, 13]. We denote
this final interaction hereafter by N3LOP, and we apply it to survey the
properties of open neutron-proton systems close to 32Sn.

3. Applications and results

3.1. Energy levels, E2 and M1 transitions

The calculated low-energy levels of different nuclei displayed in Figs. 1-5
(solid lines), show a remarkable good agreement compared to the observed
values taken from [19] (dotted lines). A compression in the levels schemes is
visible with increasing neutron number, indicating the presence of collectiv-
ity in this mass region (see Section 3.2). In the following, the electromag-
netic transitions are calculated with the use of 0.6e for neutrons and 1.6e
for protons effective charges for E2 operators, spin and orbital g factors for
protons (g2, gL) = (4.189,1.1) and neutrons (g5,g’) = (—2.869,—0.1) for
M1 operators. The electric transitions B(E2,2T — 07) for several nuclei
are reported in Fig. 6. An impressive agreement is found with the exper-
imental data from [19] within error bars. The only exception is the case
of 135Te where the calculated value is overestimated compared to the mea-
sured one. The anomaly in this nucleus was already observed and discussed
extensively in Refs. [9, 11, 20]. In addition, there is a clear increase in the
transitions strength with increasing neutron number, reflecting the transi-
tion from spherical character in the N = 82 isotones to a collective one in
the N = 86 isotones. For the magnetic moments of 2* states, an overall
good agreement is seen in Fig. 7.
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Fig.1. The low-lying energy levels of Te isotopes.

Xe Xe Xe
.
! 1555 & 1633 6" w1564
2% i 1313 271338 6 1417
4w 1072 4 — 1132
A% w834 47 m— 844
2% umin 589 27 w611
2% w377 2% s 366
0% umn 0 0% 0 0% wmn 0 m—
Exp. SM. Exp. SM. Exp. SM.

Fig. 2. The low-lying energy levels of Xe isotopes.
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Fig. 3. The low-lying energy levels of Ba isotopes.
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Fig. 4. The low-lying energy levels of Ce isotopes.
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Fig.5. The low-lying energy levels of Nd isotopes.
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Fig. 6. Variation of E2 transitions from 2% to 0T for different nuclei.
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Fig. 7. Variation of magnetic moment of 27 state for different nuclei.

3.2. Collectivity in the N = 86 isotones

In this section, we focus on the N = 86 isotonic chain i.e. 138Te, 140Xe,
142Ba, 44Ce, 16Nd. It is characterized by very strong B(E2,2T — 0%)
strength transitions (see Fig. 6), which indicate the presence of large quadru-
pole correlations. Moreover, the inspection of calculated spectroscopic quad-
rupole properties in these systems reveals striking features. Indeed,

— QS(2¢,K = 2) is more or less equal and of opposite sign to QS(QZ;,
K =0),

— Qs(3%, K = 2) ~ 0, and the low-lying 3" state is connected by a strong
transition to the 2¢ state.

All these points seen in the N = 86 isotonic chain (see Figs. 8 and 9), sign
the presence of triaxial v bands. The band is in all the cases built on the 2;
band-head state. There is also an apparent gradual increase of deformation
from '38Te to ONd, reaching a maximum in *4Ce.

In order to provide a complete vision about the deformation and the
degree of the collectivity in these systems, we use the Kumar geometric
model [21], to extract the § axial deformation parameter and ~ triaxial
angle, and get more relevant information about intrinsic shapes. From the
set of 8 and ~ values ascribed to the N = 86 isotones, we observe in Fig. 10

— mild deformation in 3¥Te,

— clear increase of deformation and non-axiality from *9Xe to 6Nd
with a maximum in *4Ce.

This enhancement of the collectivity is interpreted as a result of the pseudo-
SU(3) symmetry structure of the g7 /2, ds/2, ds/2, 51/ proton orbits [22], and
the quasi-SU(3) symmetry structure of the f 5, p3 /2 neutron orbits sequence
[23, 24].
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Fig. 8. The quadrupole moments of 2?‘ and 2; states for the NV = 86 isotones.
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Fig.9. Variation of E2 transition rates from 3% to 25 for the N = 86 isotones.
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4. Conclusions

Within the shell-model framework, we have investigated the spectro-
scopic properties and the transition rates of even—even neutron-rich nuclei
beyond '32Sn. Our calculations reproduce quite accurately the behavior of
the measured energy levels and the electromagnetic transitions. In addi-
tion, the signs of collectivity in the nuclei: 38Te, 149Xe, 142Ba, 144Ce and
M6Nd were discussed and shown with the signature of triaxial v bands.
The evolution of this collectivity is sensitive to SU(3) symmetries (or their
approximations) of the neutrons and protons orbits sequences, reaching a
maximum in *Ce. The deformation in this chain of nuclei can be consid-
ered as a transition regime, from low deformation to stronger one, already
observed experimentally in rare-earth nuclei. This study is a stringent test
of N3LOP effective interaction recently developed for this mass region and
our predictions of the electromagnetic properties and collectivity constitute
a benchmark for future experimental investigations.
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