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Recent shell-model advances in the mass region above the doubly closed
core 132Sn are reported in the present work. Using an effective interaction
based on the N3LO potential, the low-lying spectra, E2 and M1 transition
strengths are calculated for the following nuclei: 134,136,138Te, 136,138,140Xe,
138,140,142Ba, 140,142,144Ce and 142,144,146Nd. We focus in the discussion on
the collectivity in the N = 86 isotones characterized by development of
triaxial γ bands.
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1. Introduction

The mass region above 132Sn core represents an interesting area for ex-
perimental [1–8] and theoretical [9–13] nuclear structure research. In our
earlier shell-model works [1, 12, 13], we have calculated the energy levels,
the isomeric transitions and the masses of 134,136,138,140Sn. In the present
work, we have progressed in our investigation of this region by describing
the spectroscopic properties of even–even chains of nuclei with 52 ≤ Z ≤ 60
and 82 ≤ N ≤ 86 using an effective interaction based on the N3LO potential
(named N3LOP) reported in Section 3.1. The presence of the collectivity in
the N = 86 isotones is widely discussed in Section 3.2, where the quadrupole
properties sign the presence of triaxial γ bands.

2. Shell-model overview

Thereafter we carry shell-model calculations in the natural valence space
spanned by 1f7/2, 0h9/2, 1f5/2, 2p3/2, 2p1/2, 0i13/2 orbitals for neutrons and
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0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2 orbitals for protons, above an inert closed
132Sn core (hereafter denoted by r4h–r5i [14]). The numerical treatment
of such a valence space is very challenging. We face, for example, matrix
diagonalizations with basis dimensions up to ∼ 2.1011 Slater determinants
for the case of 146Nd. The calculations are carried out using Antoine and
Nathan shell-model codes [15, 16].

As a starting point, we have employed a realistic interaction derived from
chiral effective field theory potentials [17] noted by N3LO. Its repulsive short
range has been renormalized with the use of the so-called low momentum
potential Vlow k procedure, defined within a cutoff ∧ = 2.2 fm−1. It is then
adapted to the model space by many-body perturbation theory techniques,
including all the Q̂-box folded diagrams up to the second order [18]. The
corresponding neutrons and protons single-particle energies are fixed from
133Sn and 133Sb experimental values [19].

The initial N3LOP realistic interaction fails in reproducing the isomeric
transition strength in 136Sn, and we have reduced the diagonal and off-
diagonal f7/2 pairing matrix elements of the neutron–neutron part. This
was already identified as a seniority mixing effect [1, 12, 13]. We denote
this final interaction hereafter by N3LOP, and we apply it to survey the
properties of open neutron–proton systems close to 132Sn.

3. Applications and results

3.1. Energy levels, E2 and M1 transitions

The calculated low-energy levels of different nuclei displayed in Figs. 1–5
(solid lines), show a remarkable good agreement compared to the observed
values taken from [19] (dotted lines). A compression in the levels schemes is
visible with increasing neutron number, indicating the presence of collectiv-
ity in this mass region (see Section 3.2). In the following, the electromag-
netic transitions are calculated with the use of 0.6e for neutrons and 1.6e
for protons effective charges for E2 operators, spin and orbital g factors for
protons (gsπ, g

l
π) = (4.189, 1.1) and neutrons (gsν , g

l
ν) = (−2.869,−0.1) for

M1 operators. The electric transitions B(E2, 2+ → 0+) for several nuclei
are reported in Fig. 6. An impressive agreement is found with the exper-
imental data from [19] within error bars. The only exception is the case
of 136Te where the calculated value is overestimated compared to the mea-
sured one. The anomaly in this nucleus was already observed and discussed
extensively in Refs. [9, 11, 20]. In addition, there is a clear increase in the
transitions strength with increasing neutron number, reflecting the transi-
tion from spherical character in the N = 82 isotones to a collective one in
the N = 86 isotones. For the magnetic moments of 2+ states, an overall
good agreement is seen in Fig. 7.
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Fig. 1. The low-lying energy levels of Te isotopes.

Fig. 2. The low-lying energy levels of Xe isotopes.

Fig. 3. The low-lying energy levels of Ba isotopes.
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Fig. 4. The low-lying energy levels of Ce isotopes.

Fig. 5. The low-lying energy levels of Nd isotopes.
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Fig. 6. Variation of E2 transitions from 2+ to 0+ for different nuclei.
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Fig. 7. Variation of magnetic moment of 2+ state for different nuclei.

3.2. Collectivity in the N = 86 isotones

In this section, we focus on the N = 86 isotonic chain i.e. 138Te, 140Xe,
142Ba, 144Ce, 146Nd. It is characterized by very strong B(E2, 2+ → 0+)
strength transitions (see Fig. 6), which indicate the presence of large quadru-
pole correlations. Moreover, the inspection of calculated spectroscopic quad-
rupole properties in these systems reveals striking features. Indeed,

— Qs(2
+
γ ,K = 2) is more or less equal and of opposite sign to Qs(2

+
y ,

K = 0),
— Qs(3

+,K = 2) ' 0, and the low-lying 3+ state is connected by a strong
transition to the 2+γ state.

All these points seen in the N = 86 isotonic chain (see Figs. 8 and 9), sign
the presence of triaxial γ bands. The band is in all the cases built on the 2+2
band-head state. There is also an apparent gradual increase of deformation
from 138Te to 146Nd, reaching a maximum in 144Ce.

In order to provide a complete vision about the deformation and the
degree of the collectivity in these systems, we use the Kumar geometric
model [21], to extract the β axial deformation parameter and γ triaxial
angle, and get more relevant information about intrinsic shapes. From the
set of β and γ values ascribed to the N = 86 isotones, we observe in Fig. 10

— mild deformation in 138Te,

— clear increase of deformation and non-axiality from 140Xe to 146Nd
with a maximum in 144Ce.

This enhancement of the collectivity is interpreted as a result of the pseudo-
SU(3) symmetry structure of the g7/2, d5/2, d3/2, s1/2 proton orbits [22], and
the quasi-SU(3) symmetry structure of the f7/2, p3/2 neutron orbits sequence
[23, 24].
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Fig. 8. The quadrupole moments of 2+1 and 2+2 states for the N = 86 isotones.
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Fig. 9. Variation of E2 transition rates from 3+ to 2+2 for the N = 86 isotones.
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4. Conclusions

Within the shell-model framework, we have investigated the spectro-
scopic properties and the transition rates of even–even neutron-rich nuclei
beyond 132Sn. Our calculations reproduce quite accurately the behavior of
the measured energy levels and the electromagnetic transitions. In addi-
tion, the signs of collectivity in the nuclei: 138Te, 140Xe, 142Ba, 144Ce and
146Nd were discussed and shown with the signature of triaxial γ bands.
The evolution of this collectivity is sensitive to SU(3) symmetries (or their
approximations) of the neutrons and protons orbits sequences, reaching a
maximum in 144Ce. The deformation in this chain of nuclei can be consid-
ered as a transition regime, from low deformation to stronger one, already
observed experimentally in rare-earth nuclei. This study is a stringent test
of N3LOP effective interaction recently developed for this mass region and
our predictions of the electromagnetic properties and collectivity constitute
a benchmark for future experimental investigations.
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