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The thermal model properly describes the production yields of light
nuclei in relativistic heavy-ion collisions even so the loosely bound sizable
nuclei cannot exist in the dense and hot hadron gas at a chemical freeze-out.
Within the coalescence model, light nuclei are formed at the latest stage of
nuclear collisions — a kinetic freeze-out — due to final state interactions.
After discussing the models, we derive simple analytic formulas and, using
model parameters directly inferred from experimental data, we show that
the thermal and coalescence model predictions are quantitatively close to
each other. A possibility to falsify one of the two models is suggested.
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1. Introduction

Production of light nuclei and antinuclei in relativistic heavy-ion colli-
sions has been experimentally studied in a broad range of collision energies
from AGS [1–4], SPS [5–10], to RHIC [11–14] and LHC [15]. The light nu-
clei are expected to form at a late stage of high-energy collision called the
kinetic freeze-out when a fireball — the system of hot and dense matter
created at the collision early stage — decays and emitted hadrons are fly-
ing away interacting only with their close neighbors in the phase-space. In
other words, the final state interactions are believed to be responsible for
production of light nuclei, as it is assumed in the coalescence model [16, 17].
We are not interested here in the nuclear fragments which appear among
spectator nucleons as remnants of incoming nuclei.
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Recently, however, it has been found that the ratio of the deuteron-to-
proton yields (d/p) along with the ratios like 3He/d, 3He/p and analogous
quantities of antinuclei, which have been all measured in Pb–Pb collisions
at
√
sNN = 2.76 TeV [15], are in a very good agreement with the thermody-

namical model [18, 19] properly describing yields of all hadron species with
the unique temperature of 156 MeV and baryon chemical potential which
vanishes at the midrapidity region of LHC. Therefore, light nuclei seem to
behave as all other hadrons. This is very surprising, as it is hard to imagine
that loosely bound sizable nuclei can exist in the hot and dense hadron gas.
The temperature exceeds by two orders of magnitude nuclear binding ener-
gies and the inter-hadron spacing in the gas is much smaller than the radii
of nuclear fragments.

In the thermal model, see e.g. the review [20], the hadron yields are
determined by the postulate of thermodynamical equilibrium with no refer-
ence to any specific production mechanism. The ratios of particles’ yields
depend solely on the fireball’s temperature and baryon chemical potential at
the chemical freeze-out when a chemical composition of the system is fixed.
Simplicity of the model makes its success so impressive. However, it was
observed long ago that the predictions of the thermal and coalescence mod-
els are quantitatively rather similar [21]. Initially, the claim was based on a
simplified version of the coalescence model where yields of light nuclei can be
merely estimated but later on the model calculation were much refined, see
the recent study [22]. The similarity of model predictions can be related to
a conservation of the entropy [23], which depends on the system’s chemical
composition, but it does not explain the problem microscopically.

The aim of this paper is to present a comparative analysis of the co-
alescence and thermal models. For this purpose, we derive the yields of
deuterons in the two models in the form of simple analytical formulas which
greatly facilitates the comparison. To check whether the coalescence model
gives the right predictions, we constrain the model as much as possible by
inferring all its parameters directly from experimental data. We focus on
the simplest case of the ratio of deuteron-to-proton yields but our analysis
can be rather easily extended to other ratios.

In contrast to the thermal model, the coalescence one explains a micro-
scopic production mechanism of light nuclei but model predictions depend
on several parameters, magnitudes of which are not precisely known. The
model is often not properly understood, sometimes it is even misunderstood.
So, let us first present the model.

According to the coalescence approach, nucleons emitted from a fireball
with small relative momenta can form a nucleus due to attractive nuclear
forces. Therefore, the production cross section of a nuclear fragment of mass
number A with a momentum p per nucleon is proportional to the Ath power
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of the nucleon production cross section at the same momentum p. This
prediction fully agrees with experimental data but the original coalescence
model [17] does not predict a yield of light nuclei because the proportionality
constant is not known. Instead, one introduces the so-called coalescence
radius pc which gives the maximal distance in momentum space at which
nucleons can fuse into a nucleus. The yield is then expressed through the
radius pc which is of the order of 100 MeV when fitted to experimental data.
Such a version of the coalescence model was used in [21].

The deficiency of the coalescence model was removed by Sato and Yazaki
[24], see also [25, 26], who realized that the process of formation of light nuclei
strongly resembles creation of short-range inter-particle correlations due to
final state interactions. Then, as demonstrated in [27, 28], the production
of the neutron–proton correlated pairs at small relative momenta and the
deuteron formation can be treated as two different channels of the same
physical process which depends not only on the neutron–proton interaction
but also on the space-time structure of a nucleon source. If the structure is
known, the deuteron yield can be uniquely predicted with no reference to
the phenomenological parameter pc.

It was repeatedly stated in the literature — starting from the very first
paper on the coalescence model [16] — that a third body is needed for a
deuteron production because the neutron and proton, which are on mass-
shell, cannot form a deuteron due to the energy momentum conservation.
However, as observed long ago [26], this statement is simply false. The
neutrons and protons, which are emitted from a fireball, are not on the
mass-shell due to the finite space-time size of a fireball. The space-time
localization of a nucleon within the fireball washes out its four-momentum
due to the uncertainty principle. Using a more formal language of scattering
theory, the neutron–proton pair is not an asymptotic state in the remote
past or remote future, which indeed must obey the mass-shell condition,
but instead this is an intermediate scattering state. Therefore, there is no
reason to require the mass-shell constraint. Because the space-time size of
the fireball is of the same order as that of a deuteron, the mismatch of the
energy-momentum is removed by the uncertainty of energy and momentum
of the neutron and proton which fuse into the deuteron.

In the subsequent two sections, 2 and 3, we derive the ratio of deuteron-
to-proton yield in the thermal and coalescence models. In Sec. 4, we estimate
the parameters, which allow one to give quantitative model predictions, and
we discuss our results. The paper is closed with a suggestion how to falsify
one of the two models.
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2. Thermal model

Let us consider a hadron gas of the volume Vchem, the temperature Tchem

and vanishing baryon potential which, as proved in [15], is appropriate for the
midrapidity region at the LHC. The subscript ‘chem’ refers to the chemical
freeze-out when abundances of hadron species are fixed. Neglecting effects
of inter-hadron interactions and quantum statistics, the number of protons,
see e.g. [19], equals

Np =
λ

π2
Vchemm

2TchemK2 (βchemm) , (1)

where the natural units with c = ~ = kB = 1 are used, m is the proton
mass, βchem ≡ T−1

chem and K2(x) is the so-called McDonald function which
for x� 1 can be expanded as

K2(x) =

√
π

2x
e−x

(
1 +

15

8x
+O

(
1

x2

))
. (2)

Except the spin degeneracy factor 2, the factor λ is included in Eq. (1)
to roughly take into account a sizable contribution of protons coming from
decays of baryon resonances [20]. The parameter will be estimated later on.
Because the nucleon mass is significantly bigger than Tchem, expansion (2)
is justified and the proton yield becomes

Np = 2λVchem

(
mTchem

2π

)3/2

e−βchemm
(

1 +
15Tchem

8m
+O

(
T 2

chem

m2

))
. (3)

Since the number of deuterons equals

Nd =
6

π2
Vchemm

2TchemK2(2βchemm)

= 3Vchem

(
mTchem

π

)3/2

e−2βchemm

(
1 +

15Tchem

16m
+O

(
T 2

chem

m2

))
, (4)

where the deuteron mass is approximated by the double proton mass, the
ratio of the deuteron-to-proton yield is

d

p
≡ Nd

Np
=

6

λ

K2(2βchemm)

K2(βchemm)

=
3
√

2

λ
e−βchemm

(
1− 15Tchem

16m
+O

(
T 2

chem

m2

))
. (5)

We note that the parameter analogous to λ from formula (1) is not included
in Eq. (4). Although deuterons can originate from decays of excited light
fragments, the contribution is expected to be rather minor.
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3. Coalescence model

The momentum distribution of the final state deuterons is expressed in
the coalescence model through the momentum distributions of protons and
of neutrons at a half of the deuteron momentum

dNd

d3p
= A dNp

d3
(

1
2p
) dNn

d3
(

1
2p
) , (6)

where A is the deuteron formation rate which, see e.g. [26, 28], equals

A = 3
4(2π)3

∫
d3r D(r) |φd(r)|2 . (7)

The source function D(r) is the normalized to unity distribution of the rela-
tive space-time positions of the neutron and proton at the kinetic freeze-out
and φd(r) is the deuteron wave function of relative motion. The factor 3/4
reflects the fact the deuterons come from the neutron–proton pairs in the
spin triplet state. It is obviously assumed here that the nucleons emitted
from the fireball are unpolarized. Formula (6) does not assume, as one
might think, that the two nucleons are emitted simultaneously. The vec-
tor r denotes the inter-nucleon separation at the moment when the second
nucleon is emitted. For this reason, the function D(r) gives the space-time
distribution.

To compute the deuteron yield according to formula (6), the nucleon
momentum distribution needs to be specified. We write down the proton
distribution in terms of the transverse momentum (pT), transverse mass(
mT ≡

√
m2 + p2

T

)
, and rapidity (y) as

dNp

d3p
=

1

mT cosh y

dNp

dy d2pT
, (8)

and we choose the distribution at midrapidity in the form of

dNp

dy d2pT
=

Np

2π∆y

eβkinm

Tkin(m+ Tkin)
e−βkinmT , (9)

where the number of protons Np is given by Eq. (1), ∆y is a small rapid-
ity interval centered at y = 0 and Tkin is the effective temperature at the
kinetic freeze-out which takes into account the radial expansion of the fire-
ball. As seen in Eq. (9), the distribution is flat in rapidity and azimuthal
angle and it exponentially decays with the transverse mass. One checks that
distribution (9) obeys the normalization condition

∫
d3p

dNp

d3p
=

∆y/2∫
−∆y/2

dy

∫
d2pT

dNp

dy d2pT
= Np (10)
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for a sufficiently small ∆y. To obtain a good description of the deuteron mo-
mentum distribution in a broad range of transverse momentum, the exponen-
tial parameterization (9) is insufficient. However, if both the normalization
and slope parameters are taken from the experiment, the parameterization
should be good enough to compute the total yield of deuterons where the
low pT domain mostly matters.

The number of deuterons is found as

Nd ≡
∫

d3p
dNd

d3p
=

2N2
p

π∆y

A
Tkin(Tkin +m)2

,

where the momentum distributions of protons and neutrons are assumed to
be the same.

To obtain the final result of the deuteron yield in an analytic form, we
do not use the Hulthén wave function of a deuteron, as we did in [28], but
we choose both the source and wave functions as Gaussian that is

D(r) =
e
− r2

4R2
kin(

4πR2
kin

)3/2 , |φd(r)|2 =
e
− r2

4R2
d(

4πR2
d

)3/2 , (11)

where Rkin is a space-time size of the fireball at the kinetic freeze-out and Rd
is the deuteron radius. With parametrizations (11), the deuteron formation
rate (7) is estimated as

A =
3

4

π3/2(
R2

kin +R2
d

)3/2 . (12)

We have checked that the difference between the rates A computed with
the Gaussian and Hulthén wave functions is less than 20% for Rkin ≥ 4 fm
which is the range relevant for us.

Using formula (12) and expressing the fireball’s volume at the chemical
freeze-out as

Vchem ≡
∫

d3r e
− r2

2R2
chem = (2π)3/2R3

chem , (13)

the ratio of the deuteron-to-proton yields equals

d

p
=

3
√

2λ

∆y

R3
chem(

R2
kin +R2

d

)3/2 m2TchemK2(βchemm)

Tkin(Tkin +m)2

=
3
√
π λ

∆y

R3
chem(

R2
kin +R2

d

)3/2 (mTchem)3/2

Tkin(Tkin +m)2

×e−βchemm
(

1 +
15Tchem

8m
+O

(
T 2

chem

m2

))
. (14)
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The ratio of ratios (14) and (5), which is denoted as Q, equals

Q ≡ (d/p)CM

(d/p)TM

=
λ2

√
2 ∆y

R3
chem(

R2
kin +R2

d

)3/2 m2Tchem

Tkin(Tkin +m)2

K2
2 (βchemm)

K2(2βchemm)

=

√
π λ2

√
2 ∆y

R3
chem(

R2
kin +R2

d

)3/2 (mTchem)3/2

Tkin(Tkin +m)2

(
1 +

45Tchem

16m
+O

(
T 2

chem

m2

))
.

(15)

In the next section, after estimating the parameters which enter Eq. (15), a
magnitude of the ratio Q is computed.

4. Discussion

The d/p ratio found within the thermal model (5) is determined by the
proton mass m, the temperature of the chemical freeze-out Tchem and the
parameter λ. As already mentioned, the baryon chemical potential vanishes
at midrapidities at the LHC energies. Since m = 938 MeV and Tchem =
156 MeV for Pb–Pb collisions at

√
sNN = 2.76 TeV [15], the d/p ratio (5)

equals the experimental value of 3.6 × 10−3 [15] if the parameter λ = 2.51.
This value is used further on.

To obtain the d/p ratio within the coalescence model (14), one needs,
except m, Tchem and λ, the values of ∆y, Rd, Rchem, Rkin and Tkin. The
measurement [15] was performed in the rapidity window ∆y = 1. The root-
mean-square radius of the deuteron is Rd = 2 fm [29]. Vchem can be found
from Eq. (4), using the number of deuterons for different collision centralities
which are given in [15]. The volume is further recalculated into Rchem by
means of Eq. (13).

The fireball radius at the kinetic freeze-out Rkin is determined by the
femtoscopic π–π correlations. Specifically, the experimentally measured radii
Rout, Rside, Rlong are used to get the kinetic freeze-out radius as Rkin =

(RoutRsideRlong)1/3. Then, the kinetic freeze-out volume equals

Vkin ≡
∫

d3r e
− r2out

2R2
out
− r2side

2R2
side

−
r2long

2R2
long

= (2π)3/2RoutRsideRlong = (2π)3/2R3
kin . (16)

We further use the values of Rout, Rside, Rlong given in [30] which are mea-
sured at the smallest transverse momentum.
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The parameter Tkin from formula (15) is the effective temperature at
kinetic freeze-out which takes into account a radial expansion of the fireball.
To determine Tkin, we express it through the mean transverse momentum of
deuterons 〈pT〉 which is also presented in [15]. One easily finds

〈pT〉 ≡
∫∞

0 dpTp
2
T e
−βkin

√
4m2+p2T∫∞

0 dpTpT e
−βkin

√
4m2+p2T

=
4m2

Tkin(1 + 2βkinm)
e2βkinmK2(2βkinm) . (17)

Using formula (17), the mean transverse momentum 〈pT〉 can be recalcu-
lated into Tkin. Since the effective kinetic temperature is comparable to the
nucleon mass, expansion (2) cannot be applied to formula (17).

In Table I, we list the values of the ratio Q defined by Eq. (15) for the
four collision centralities together with the parameters of Pb–Pb collisions at√
sNN = 2.76 TeV. As seen, the predictions of the thermal model are bigger

by the factor 6÷ 8 than that of the coalescence model. Needless to say, the
agreement between the models can be improved by slightly changing values
of the parameters but we feel that it goes beyond quantitative accuracy of
our approach. So, we conclude that the two models predict the d/p ratio
of the same order of magnitude and thus it is not so surprising that the
thermal model agrees with experimental data on light fragments.

TABLE I

The ratio Q and the centrality-dependent parameters of Pb–Pb collisions at√
sNN = 2.76 TeV. The numbers in the first three columns are taken from the

experimental study [15]. The volume Vchem is computed from Eq. (4) assuming
that Tchem = 156 MeV. The radius Rchem is obtained according to Eq. (13). The
effective temperature Tkin is determined by 〈pT〉 using Eq. (17). The radius Rkin

is defined as Rkin = (RoutRsideRlong)1/3 and the radii Rout, Rside, Rlong are taken
from the experimental work [30]. Finally, the ratio Q is given by Eq. (15).

Centrality Nd 〈pT〉 Vchem Rchem Tkin Rkin Q
[GeV] [fm3] [fm] [MeV] [fm]

0–10% 0.098 2.12 3 590 6.1 900 7.0 0.13
10–20% 0.076 2.07 2 780 5.6 890 6.2 0.16
20–40% 0.048 1.92 1 760 4.8 850 5.1 0.17
40–60% 0.019 1.63 696 3.5 760 4.0 0.15
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5. Outlook

The coalescence mechanism seems physically correct but the question
arises how to falsify the thermodynamical model. Within the thermal ap-
proach, a yield of light nuclei of mass M , which is controlled by the de-
generacy coefficient and the exponential factor e−M/Tchem , is insensitive to
an internal structure of a given light nucleus. It depends only weakly on
the binding energy εB because M � Tchem � εB. Therefore, it would be
very interesting to compare the yields of two nuclei of the same number
of nucleons, and consequently of close masses, but of very different spatial
structures. Then, the thermal model predicts very similar yields of the two
nuclei, while in the coalescence model the yield of the smaller nucleus is ex-
pected to be bigger. Unfortunately, there is no such a pair of stable nuclei of
mass number A ≤ 5. We note that up to now the heaviest observed nucleus,
which is produced in the central rapidity in relativistic heavy-ion collisions,
is 4He [14, 15]. A possible pair of nuclides, which can be useful to confront
the coalescence to thermal model, is 4He and 4Li. The alpha particle is,
as well-known, compact, well-bound and has zero spin. The nuclide 4Li,
which was discovered in Brekeley in 1965 [31], is loose, has spin 2 and it
decays into 3He+p with the width of 6 MeV [32]. Simultaneous registration
of 3He and p could allow for a reconstruction of 4Li and a measurement
of its yield. Since the mass of 4He is smaller than that of 4Li by only 20
MeV and there are five spin states of 4Li (and one of 4He), the yield of
4Li is, according to the thermal model with Tchem = 160 MeV, about five
times bigger than that of 4He. An experimental effort must be obviously
accompanied by theoretical studies. The yields of 4He and 5,6Li have been
already computed in the coalescence model [33] but there is still some space
for improvements. In particular, a nontrivial internal structure of 4Li should
be properly incorporated into the model calculations.

I am very grateful to Peter Braun-Munzinger for helpful correspondence.
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