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We propose a new approach for studying pion fluctuation for deeper
understanding of the internal dynamics, from a perspective of fractional
Brownian motion (fBm)-based complex network analysis method called
Visibility Graph analysis. This chaos-based, rigorous, non-linear technique
is applied to study the erratic behaviour of multipion production in π−–
Ag/Br interactions at 350 GeV. This method can offer reliable results with
finite data points. The Power of Scale-freeness of Visibility Graph denoted
by PSVG is a measure of fractality, which can be used as a quantitative pa-
rameter for the assessment of the state of a chaotic system. The event-wise
fluctuation of the multipion production process can be represented by this
parameter. From the analysis of the PSVG, we can quantitatively confirm
that fractal behaviour of the particle production process depends on the
target excitation, and the fractality decreases with the increase of target
excitation.
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1. Introduction

For the last decade, the analysis of large density fluctuations in high-
energy interactions has received much attention due to its capability to
provide information on the dynamics of the process of multiparticle pro-
duction. A new method named intermittency was first introduced by Bialas
and Peschanski [1] for the analysis of large fluctuations. The power-law
behaviour of the factorial moments with respect to the size of phase-space
intervals in decreasing mode has been detected in multipion production in
heavy-ion interaction. This was indicative of self-similar fluctuation in this
process.
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In the recent past, several techniques based on the fractal theory have
been used to analyse the multipion emission data [2–6]. Hwa and Takagi
have developed the most popular of them — Gq moment and Tq moment
[2, 6]. Considering their merits and demerits, both these methods have been
extensively applied to analyse the multipion emission process [7, 8]. Then
techniques like the Detrended Fluctuation Analysis (DFA) method [9] have
been used for determining monofractal scaling parameters, and the Hurst
exponent, which is related with fractal dimension, has been deduced from the
DFA function of a time series [10]. The method has been used for detecting
long-range correlations in noisy and non-stationary time-series data [11, 12].
DFA method has been extended by Kantelhardt et al. [13] for analysing non-
stationary and multifractal time series. This generalized DFA is known as
the multifractal-DFA (MF-DFA) method. Zhang et al. [14] applied MF-DFA
method to analyse the multifractal structure of the distribution of shower
particles around central rapidity region of Au–Au collisions at

√
sNN =

200AGeV. Multifractal analysis in particle production processes has been
recently done in various works [15–19]. Both DFA and MF-DFA methods
give most accurate results for random processes like the Brownian motion
where the time series has an infinite number of data points. But in real-
life situations, we hardly get infinite number of data points and end up
using finite number of data points for calculation of the Hurst exponent
and the MF-DFA parameter. In this process, the long-range correlations in
the time series are fractionally broken into finite number of data points and
the local dynamics relating to a particular temporal window are obviously
overestimated.

In the recent past, Albert and Barabási have reviewed the latest advances
in the field of complex network and discussed the analytic tools and mod-
els for random graphs, small-world and scale-free networks [20, 21]. Havlin
et al. [22] have discussed the application of network sciences to the de-
scription, analysis, understanding, design and repair of multi-level complex
systems which is detected in man-made and human social systems, in or-
ganic and inorganic matter, from nano- to macroscales, and in natural and
anthropogenic structures. Zhao et al. [23] have investigated the dynamics of
stock market by means of correlation-based network, and identified global
expansion and local clustering market behaviours during crises using the
heterogeneous time scales. In this regard, Visibility Graph analysis [24, 25]
method has gained importance due to its entirely different, rigorous ap-
proach. Lacasa et al. have used fractional Brownian motion (fBm) and
fractional Gaussian noises (fGn) series as a theoretical framework to analyse
real-time series in different scientific fields. The Hurst parameter calculated
for fBm with different methods, often yields ambiguous results, because
of the presence of inherent non-stationarity and long-range dependence in
fBm. Lacasa et al. [24, 25] applied classic method of complex network anal-
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ysis to quantify long-range dependence and fractality of a time series [25]
and mapped fBm and fGn series into a scale-free Visibility Graph having
the degree distribution as a function of the Hurst exponent [25]. They have
further analysed Q-series [26], Stern series [27] and Thue–Morse series [28],
and showed that Visibility Graph can differentiate different kinds of com-
plexity and fractality. Moreover, they have suggested that this algorithm
not only detects the difference between random and chaotic series but also
the spatial location of inverse bifurcations in chaotic dynamical systems.
The reliability of Visibility Graph method has been confirmed for artificial
data series as well as real data series by Lacasa et al. [24, 25] the details
of which are given in [29, 30]. Visibility Graph analysis is altogether a new
concept to estimate fractality from a new perspective without estimating
multifractality. Moreover, this method has been applied widely over time
series with finite number of data points, even with 400 data points [31], and
has achieved reliable result in various fields of science. Zhao et al. have ap-
plied both MF-DFA and Visibility Graph methods to investigate the fluctu-
ation and geometrical structures of magnetization time series and confirmed
that the Hurst exponent is a good indicator of phase transition for a com-
plex system [32]. Recently, we have analysed multiplicity fluctuation around
the central rapidity and phase transition in high-energy interactions — one
hadron–nucleus and other nucleus–nucleus, namely π−–AgBr (350 GeV) and
32S–AgBr (200AGeV), using Visibility Graph method [33]. Further, using
the same method, we have analysed the fractality of void probability dis-
tribution measured for pseudorapidity (η) and azimuthal angle (φ) space in
32S–Ag/Br interaction at an incident energy of 200 GeV per nucleon [34–36].

Target protons, also known as grey tracks as per the terminology of nu-
clear emulsion, are the low-energy part of intra-cascade formed from high-
energy interactions. It should be noted that the number of grey particles,
normally denoted by ng, provides an indirect measurement of the impact or
collision centrality. This centrality increases with the count of grey parti-
cles. Generally speaking, ng can be considered as the measure of violence
of target fragmentation [37]. So it would be interesting to analyse the be-
haviour of pion with respect to ng to gather more information about the
inner dynamics of the particle production process in high-energy nuclear
collision. The behaviour of pion with respect to ng or the number of target
fragments provides more insight about the chaotic behaviour of the pions
in multipion production process. In this work, we have applied Visibility
Graph analysis to study the fractal behaviour of multipion production in
π−–Ag/Br interactions at 350 GeV with respect to different degree of target
excitation. Also, as finite number of events are available here, the use of
Visibility Graph technique is justified.
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The rest of the paper is organized as follows. The method of Visibility
Graph technique is presented in Section 2. The details of data are given in
Section 3.1. Steps of the analysis and the inferences from the test results
are given in Section 3.2. The paper is concluded in Section 4.

2. Method of analysis

We would briefly describe the Visibility Graph technique and process of
extracting Power of Scale-freeness of Visibility Graph, PSVG, in this section.

2.1. Visibility Graph algorithm

The Visibility Graph algorithm maps time-series X to its Visibility
Graph. Suppose the vertex or node of ith point of the time series is de-
noted by Xi. Two vertices (nodes) of the graph, Xm and Xn, are said to be
connected via a bidirectional edge if and only if the below equation is valid

Xm+j < Xn +

(
n− (m+ j)

n−m

)
(Xm −Xn) , (1)

where ∀j ∈ Z+ and j < (n−m).
In Fig. 1, it is shown that the nodes Xm and Xn, where m = i and

n = i + 6 are visible to each other only if Eq. (1) is valid. As per the
Visibility Graph algorithm, two sequential points of the time series can see
each other, hence all sequential nodes are connected together.

Fig. 1. Visibility Graph for time series X.

2.1.1. Power of Scale-freeness of Visibility Graph — PSVG

Lacasa et al. [24, 25] have confirmed that a fractal time series can be
converted to a scale-free graph using Visibility Graph method. The degree
of a node or vertex in a graph, here Visibility Graph, is the number of
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connections or edges the node has with rest of the nodes in the graph. The
degree distribution P (k) of a network is then defined as the fraction of nodes
with degree k, present in the network. Hence, if there are n number of nodes
in total in a network and nk of them have a degree k, we have P (k) = nk/n
for all values of k. As per Lacasa et al. [24, 25] and Ahmadlou et al. [38], the
degree of scale-freeness of a Visibility Graph corresponds to the amount of
fractality and complexity of the time series. According to the scale-freeness
property of Visibility Graph, the degree distribution of its nodes follows
the power law, i.e. P (k) ∼ k−λp , where λp is a constant and it is called
the Power of the Scale-freeness in Visibility Graph — PSVG. Hence, λp or
PSVG corresponds to the amount of self-similarity, fractality and a measure
of complexity of the time series.

As the fractal dimension measures the amount of self-similarity of a time
series, λp is calculated from the slope of log2[P (k)] versus log2[1/k] of the
time series, indicates the FD — Fractal Dimension of the signal [24, 25, 38].
It is also observed that there is an inverse linear relationship between PSVG
(λp) and the Hurst exponent, H, of the associated time series [25].

3. Experimental details

3.1. Data description

Illford G5 emulsion plates were exposed to a π− beam of 350GeV incident
energy from CERN, and the data used in this experiment was obtained from
there. To scan the plates, a LeitzMetaloplan microscope with a specification
of 10X objective lens and 10X ocular lens equipped with a semi-automatic
scanning stage was used. To minimize the biases in detection, counting and
measurement, each plate was scanned by two independent observers and,
consequently, the scanning efficiency could be increased. An oil immersion
100X objective was used for doing the final measurement. The measuring
system was integrated with both the microscopic systems having specifica-
tion of 1 µm resolution along X- and Y -axes, and 0.5 µm resolution along
Z-axis.

Events were selected according to the below criteria.

— The incident beam-track had to lie within 3◦ from the axis of the main
beam in the pellicle. This criteria was to ensure the selection of real
projectile beam.

— The events having the set of interactions within the range of 20 µm
from top and bottom surfaces of the pellicle were rejected. This helped
in reducing the losses of tracks and minimizing the errors in the mea-
surements of both emission and azimuthal angles.
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— To ensure that the events chosen should not include interactions from
the secondary tracks of the other interactions, all the primary beam-
tracks were traced along the backward direction

The details of the events are also elaborated in our earlier works
[7, 8, 39–43]. As per the terminology of nuclear emulsion [44], the par-
ticles emitted after interactions can be classified as the shower, grey and
black particles. The details of these particles are mentioned below.

1. Shower particles. The tracks of particles having ionization less than or
equal to 1.4 I0 are called shower tracks, I0 is the minimum ionization
of a singly charged particle. Pions with a small admixture ofK mesons
and fast protons mostly generate the shower tracks. The velocities of
these particles are greater than 0.7 c, where c is the velocity of light in
free space.

2. Grey particle. Knocked out protons in the energy range of 30–400 MeV,
slow pions having energy of about 30–60 MeV, and admixture of
deuterons and tritions generally produces the grey particles. They have
ionization lying between 1.4 I0 and 10 I0. These grey particles have
ranges greater than 3mm in the emulsion medium and have velocities
between 0.3 c and 0.7 c.

3. Black particles. They are also known as target fragments, consisting
of both singly charged and multiply charged fragments. They are
fragments of various elements such as carbon, lithium and beryllium,
etc. with ionization greater than or equal to 10 I0. These particles have
maximum ionizing power and are less energetic and, therefore, short
ranged. Their ranges are less than 3mm in the emulsion medium.
Their velocities are less than 0.3 c.

3.2. Our method of analysis

We have divided the total number of events in three ranges of ng. In
doing so, although the number of events in some of them is comparatively
low this does not affect the result of the analysis, as we have highlighted
earlier in the text that this new method only can deliver reliable results
with lesser data even with 400 data points [31].

To analyse the fractal behaviour of pions on target excitation, we have
chosen the parameter pseudorapidity η of produced pions in π−–Ag/Br in-
teractions at 350 GeV and grouped the data as per the below three ranges
of number of grey particles denoted by ng. For example, the first dataset
includes η values of the events having the number of grey particles ng, in the
range of [0, 2] or 0 ≤ ng ≤ 2. These ranges correspond to different degree of
target excitation.
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1. 0 ≤ ng ≤ 2 ,
2. 3 ≤ ng ≤ 5 ,
3. 6 ≤ ng ≤ 13 .

Then we have constructed Visibility Graphs from the three datasets of
η values corresponding to the above three ranges of ng, as per the method
described in Section 2.1. For each of the 3 Visibility Graphs, the following
parameters are analysed in Sections 3.2.1 and 3.2.2.

3.2.1. Network parameters

1. Heterogeneity index. This parameter calculated for the network is
the quantitative characterization of network heterogeneity. Moderate
to high value of this index characterizes a scale-free network. The
ranges for the heterogeneity index are given in [45]. Here, heterogeneity
indexes are extracted for all 3 Visibility Graphs as per the method
proposed by Estrada [45] and listed in Table I. It is evident from the
values that all the 3 Visibility Graphs are moderately heterogeneous.
Moreover, the range of values of the indexes conforms to the scale-
free property of the Visibility Graphs [45] and also it is evident that
the Visibility Graph constructed for the second ng range is the most
heterogeneous.

TABLE I

Trend of heterogeneity index, average clustering coefficient, average degree for the
Visibility Graphs created from the three datasets of η values corresponding to the
three ranges of ng.

ng range Het. index Avg. clust. coeff. Avg. deg.

0 ≤ ng ≤ 2 0.23 0.64 50.16
3 ≤ ng ≤ 5 0.26 0.63 51.97
6 ≤ ng ≤ 13 0.24 0.61 58.80

2. Average clustering coefficient. This parameter measures the likelihood
that whether the neighbour nodes of a node are also neighbours to
each other or not. Hence, clustering coefficient of a graph is the mea-
surement of degree towards which nodes of the graph tend to cluster
together. Average clustering coefficients for the 3 Visibility Graphs are
calculated as per the method prescribed by Watts and Strogatz [46]
and listed in Table I. In this experiment, average clustering coefficients
of the Visibility Graphs are monotonically decreasing with increasing
target excitation.
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3. Average degree. This parameter of a graph quantifies globally, what is
measured locally by the node degrees of the graph [47]. Comparison of
the average degree of the Visibility Graphs formed from each dataset
is shown in Table I. It is evident that average degree is monotonically
increasing with increasing target excitation.

4. Average shortest path. This parameter is defined as the average num-
ber of steps along the shortest paths for all possible pairs of network
nodes. It is a measurement of the efficiency of transportation process
of information through the network. The average shortest paths be-
tween the nodes of the 3 Visibility Graphs created above are calculated
as per the method proposed by Johnson [48] and listed in Table II. It
is the highest for the Visibility Graph created for the first range of ng
or the lowest target excitation. Then for the rest of the graphs, the
values are almost similar.

TABLE II

Trend of average shortest path and assortativity coefficient for the Visibility Graphs
created from the three datasets of η values corresponding to the three ranges of ng.

ng range Avg. shrt. path Ass. coeff.

0 ≤ ng ≤ 2 3.03 −0.21
3 ≤ ng ≤ 5 2.73 −0.21
6 ≤ ng ≤ 13 2.74 −0.27

5. Assortativity coefficient. A graph is said to be assortative if its edges
generally appear between its nodes of same type. It is disassortative
if edges normally appear between nodes of different types. Hence,
the assortativity coefficient of the Visibility Graph is the measure of
correlation of degree between pairs of linked nodes. Assortativity co-
efficients for the Visibility Graphs are calculated as per the method
proposed by Newman [49] and listed in Table II. It is evident that all
the 3 graphs are disassortative. Also assortativity coefficient remains
the same for the first two ranges and decreases in the third range which
has the maximum target excitation.

3.2.2. Analysis of PSVG (λp) values

The values of P (k) versus k are calculated for the Visibility Graphs
corresponding to each of the three datasets as per the method described in
Section 2.1.1.
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The P (k) versus k plot for the dataset of η values of the events having
range of ng as 0 ≤ ng ≤ 2 is shown in Fig. 2, and the power-law relationship
is evident here.
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Fig. 2. P (k) versus k for the Visibility Graph created for η values for the range of
0 ≤ ng ≤ 2 for π−–AgBr interaction at 350 GeV.

PSVG (λp) is calculated from the slope of log2[1/k] versus log2[P (k)]
for each set as per the method in Section 2.1.1. Plot of log2[1/k] versus
log2[P (k)] for the range of 0 ≤ ng ≤ 2 is shown in Fig. 3. λp for this range
is calculated as 1.37.
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Fig. 3. Slope of log2[1/k] versus log2[P (k)] for the Visibility Graph created for
η values for the range of 0 ≤ ng ≤ 2 for π−–AgBr interaction at 350 GeV.

For each of the Visibility Graph constructed for the datasets of η values
corresponding to 3 ranges of ng, the λp values are calculated and listed
in Table III. It is evident that PSVG (λp) is consistently decreasing with
increasing ranges of ng which signify the degrees of target excitation.
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TABLE III

λp values calculated for ng-range-wise datasets of η values.

ng range λp

0 ≤ ng ≤ 2 1.37
3 ≤ ng ≤ 5 1.23
6 ≤ ng ≤ 13 1.18

Monte Carlo simulation for PSVG analysis

Next, we have repeated the Visibility Graph analysis as per the steps
described in Section 2.1.1, on the randomized version of experimental data
and calculated the values of PSVG (λp) and listed them in Table IV. It is
evident from Table IV that PSVG values (λp) decrease more (around 12%)
from the first to second ranges of number of grey particles (ng) than the
second to third ranges. However, λp decreases consistently with increase of
target excitation. Further, we have generated Monte Carlo events assuming
independent emission of pions in π−–AgBr interaction at 350 GeV. Monte
Carlo events have been chosen in such a way that dn

dη distribution of Monte
Carlo simulated events resembles the corresponding dn

dη of the real ensem-
bles. With these Monte Carlo generated events, we again repeated the same
method of analysis as described in Section 2.1.1 and calculated λp values are
listed in Table IV.

TABLE IV

λp values calculated for ng-range-wise datasets of η values for experimental, ran-
domized data and Monte Carlo generated events.

ng range λp exp λp rand λp mc

0 ≤ ng ≤ 2 1.37 2.78 3.50
3 ≤ ng ≤ 5 1.23 2.95 3.34
6 ≤ ng ≤ 13 1.18 2.81 3.15

We can compare the PSVG (λp) values calculated for the:

1. Experimental data.
2. Randomized data.
3. Monte Carlo generated events.

All are listed in Table IV.
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Qualitative and quantitative interpretation

From the comparison, we can state that the PSVG values for real events
are substantially different from those of simulated events. The values of
PSVG (λp) essentially is an indicator of degree of connectivity of network in
a complex system. The values of λp in experimental data being significantly
different from randomized and Monte Carlo simulated ensembles confirm
that this degree of complexity, which is never the outcome of randomized
or Monte Carlo simulated fluctuation pattern, is indicative of dynamics in-
volved in pionisation process. Quantitatively the difference of λp, calculated
for the experimental data, is of the order of 100%–140% for randomized data
and 150%–170% for Monte Carlo simulated data, for all three ranges of ng.
We can get a clear picture of this difference in Fig. 4.
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Fig. 4. Comparison of λp values of experimental data with randomized and Monte
Carlo generated events, for each ng range.

It is relevant to analyse the origin of strong difference of PSVG parame-
ters of experimental data with randomized and Monte Carlo simulated data.
To provide order or definite properties to a structural form inherent in the
chaos-based complex system, fractal geometry has been evolved. In the case
of Visibility Graph method, the data series in question is converted to a
graph and, as per Lacasa et al. [24, 25], a fractal data series is always con-
verted to a scale-free graph [24]. As power-law relationship between two
quantities represents self-similarity of the large and small fragments of a
fractal system, we can deduce that the power-law relationship visible in de-
gree distribution series derived from the Visibility Graph constructed from
the data series, confirms the graph’s scale-freeness property which has been
inherited from the data series. As already explained in Section 2.1.1, this
power-law exponent or the PSVG parameter corresponds to the amount of
complexity and fractality of the data series and, in turn, indicates the frac-
tal dimension of the data series [24, 25, 38]. Hence, PSVG (λp) provides a
measure of degree of complexity and, therefore, with the help of this parame-
ter, one can characterise dynamics behind a complex phenomenon. Further,
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there exists an inverse linear relationship between λp and the Hurst exponent
and, as mentioned earlier in the manuscript, the visibility graph technique
is more suitable for accurately finding the Hurst exponent [25]. We can also
use the Hurst exponent to compare between experimental data and random-
ized and Monte Carlo simulated data. Figure 5 shows strong values of the
Hurst exponent of experimental data compared to that of randomized and
Monte Carlo simulated data, justifiably opposite to the behaviour shown by
PSVG analysis in Fig. 4.
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Fig. 5. Comparison of Hurst exponent values of experimental data with randomized
and Monte Carlo generated events, for each ng range.

The Hurst exponent can decipher information about short-range corre-
lation [13]. Thus, PSVG values reveal the degree of complexity involved,
whereas the Hurst exponent provides information about the degree or na-
ture of short-range correlation. Needless to say, the trends of both the
parameters show that the dynamics of pion fluctuations studied cannot be
accounted for randomness or fluctuations of Monte Carlo simulated events.
In short, the experimental data used for fluctuation studies, when compared
with random/Monte Carlo simulated data may show smaller/larger values
according to the specifics of the parameters (PSVG/Hurst exponent) reveal-
ing identical information about inner dynamics.

Thus, using this novel approach of complex network based method, high-
energy pionisation process can be studied quantitatively exploiting a new pa-
rameter λp, i.e. PSVG (along with the Hurst exponent derived from PSVG).
PSVG can be useful not only for assessment of degree of fluctuation in differ-
ent nuclear collisions but also for assessment of prospective phase transition.
One single quantitative parameter, λp, suffices to decode the dynamics of pi-
onisation process in high-energy interaction using a more precise and robust
methodology.
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4. Conclusion

— We have presented a chaos-based rigorous non-linear technique called
Visibility Graph analysis (utilizing the parameters — heterogeneity
index, average clustering coefficient, degree and shortest path, assor-
tativity coefficient and PSVG (λp)), to study the fluctuation of pions
in high-energy collision. In this analysis, we have studied π−–Ag/Br
interactions at 350 GeV using Visibility Graph analysis.

— This work presents new data on scaling behaviour of multiplicity fluc-
tuations from a new perspective. As evident from figures and tables,
the study clearly indicates that the pion multiplicity fluctuations obey
a scaling law. Further, we have found a decreasing trend of PSVG
values (λp) for three ranges of grey particles (ng) confirming that the
fractal behaviour of pion production decreases with increase of tar-
get excitation. This is an interesting and useful finding in the case of
hadron–nucleus interaction at high energy.

— The study of scaling behaviour from an entirely new perspective is
a first of the kind analysis in the domain of high-energy pionisation
process yielding interesting, reliable results useful for understanding
the dynamics of pion production in high-energy hadronic and nuclear
interaction.

— Similar analysis can be done with the hadronic data of high energy
and result would be of immense importance for modelling pionisation
process in high-energy nuclear collision. Eventually, we emphasize
the assessment of phase transition in high-energy collision, with the
help of network analysis, exploiting the PSVG (Power of the Scale-
freeness in Visibility Graph, which is implicitly connected with the
Hurst exponent. The Hurst exponent has recently been confirmed as a
good indicator of phase transition for magnetization time series [32]).
This analysis can be extended with ALICE data of Pb–Pb collision
and, in future experiments, with high energies to capture the onset of
QGP.

We thank the Department of Higher Education, Government of West
Bengal, India for logistics support of computational analysis.
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