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A new family of solvable potentials related to the Schrédinger—Riccati
equation has been investigated. This one-dimensional potential family de-
pends on parameters and is restricted to the real interval. It is shown that
this potential class, which is a rather general class of solvable potentials
related to the hypergeometric functions, can be generalized to even wider
classes of solvable potentials. As a consequence, the non-linear Schrédinger-
type equation has been obtained.
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1. Introduction

Though, in the present paper we deal with real equations, the obtained
results can be developed to the complex domain following the approaches [1].
Solvable problems of non-relativistic quantum mechanics have always
attracted much attention |2, 3|]. The analytical methods to resolve the
Schrodinger equation are very well-known [4]. A further remarkable de-
velopment in solving the Schrédinger equation was the introduction of the
concept of shape invariance [3]. Many of the potentials related by super-
symmetry |2, 5, 6] were found to have similar shapes (i.e. to depend on the
coordinate in similar way), only the parameters appearing in them were dif-
ferent. Although the number of potentials satisfying the shape invariance
condition is limited, it turned out that the energy spectrum and the wave
functions can be determined by elementary calculations in this case.
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2. Schrédinger equation

In the present paper, we consider the Schrédinger equation in one di-
mension, setting h = 2m = 1:

d2
L o)+ (B = V(@) =0, o
then the function (@)
W) = =@ (2)

where prime denotes differentiation with respect to x, satisfies the corre-
sponding Riccati equation

W)(@) = W2(x) = By — V(). (3)
Assuming that the function Wy(z) has a zero inside interval I and
Wi(z) >0, VeelCR, (4)
which is associated with normalization of the basic function g, we get
W) = F(Wo), (5)

where F' is an arbitrary function satisfying Eq. (4). The last equation is
obtained from reversibility of the function Wy(x) on interval I. Taking
Eq. (5) into account and comparing it with Eq. (3), we get the following
result:

W(a) = Wg + f(Wo), (6)

where

Eo—V(x) = f(Wo). (7)

Now, we can express the potential V(z) in terms of Wy and we can use
Eq. (6) to generate potentials by choosing f(Wp).

A simplest and most obvious choice seems to be a second order polyno-
mial

Wi(z) = AWZ + BWy + C, (8)

where A, B, C are parameters. This differential equation is a first-order one
and it can be solved in a straightforward way. The solution of Eq. (8) has
the form of

B V-B?+4AC 1\/27
WO(J;)__M+2Atan(2 —B%2+4AC(x —x0) ), (9)
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where - -
xg— ——----- <<+ —m———. 10
O V=B*+4aCc — " J=BZr4AC (10
Thus,

B(z—=zq) 1 i
Yo(z) =e 24 cos { 5V —B? +4AC(z — x0) (11)
is the unnormalized form of the ground state.

3. Cascade of equations

In order to have the same potential function in the Riccati equation for
n = 1, we introduce an expression for Wi:

a

MW

(12)

Now, let us turn our attention to the explicit determination of the coefficients
a1,b1,c; in terms of the A, B,C. From Eq. (3) and Eq. (8), we get

22
0 = (A+2)C—m, (13)
by = A+2, (14)
. (A+2)B
Cc1 — _m (15)

Strightforward calculations lead us to the form of the first excited state wave
function

P1(z) = e (cosO(x — x9))7° (g cos O(x — ) + By sinO(x — xp))"*, (16)

where all coefficients, denoted in the Greek letters, depend on the parameters
A, B,C. Although this relationship is rather complex but, by the use of
equations (2), (9) and (12), easy to achieve.

Considerations presented above can be generalized if we take the explicit
form of the function W, in terms of Wj:

Gnp

W, = Wo — . (17)

Cn
baWo — "
O b Wy — -

This function preserves the expression of equation

W, (z) — Wi(z) = Wi(z) — W§(z) + B, — Eg (18)
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for suitable values of coefficients which are involved in a system of non-
linear equations (too complicated to be presented here). We should select
the appropriate values of A, B, C' parameters to simplify calculations. It will
be done in the next chapter.

Equations (2), (3) and (8) enable us to obtain every wave functions v,
and energies F,. It is easy to prove [6] that the function Wy fulfil the shape
invariance condition, so this potential family, resulting from Eq. (8), is an
example for shape-invariant solvable potentials. Using Eq. (17), the wave
functions can be written, without normalization, as

Un(x) = e (cos f(x—mxp))70" H(ai cos O(x—xo)+F;sinf(x—1x0))", (19)

=1

where, as in the previous case, all coefficients written in Greek depend on
the A, B, C parameters.

4. The classic potentials

Equation (8) offers a convenient way to link this simple method with the
well-known solutions of the Schrédinger equation. For instance, choosing
B =0,C =1, we get the following results:

Wi =AWg +1 (20)

and the first three wave functions
1
do(z) = (cos (VAz)) ", (21)

cosfa: sin\/>:6
wl(x)z( <A> (A>, (22)

(cos (VD)) ¥ (=15 (1-+ ) cos (23/32))

¢2($) = A ) (23)

N———
-

NI N

which are orthoghonal on domain I (Eq. (10)), tend to very well-known
2

solutions of the quantum oscillator ¥, (z) — H,(z)e”z for A — 0. It can
be seen from figure 1 that the wave functions have the same characteristic
shapes but they differ in domains.
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-1

Fig.1. Example of the wave functions with different values of the parameter A,
where z is on the horizontal axis and ¢, (z) on the vertical one. Left: The first
three wave functions for A > 0 (A = 0.9). Right: The first three wave functions
of the quantum harmonic oscillator (A — 0).

Basing on the procedure described above, we are able to get solutions of
the Schrodinger equation with the radial Coulomb potential (angular mo-
mentum is equal to zero). In this case,

2

B
W, = AWE — BW, + T (24)

whose basic solution is

_ (sin(JVA—1B2))T
Yo(z) = 2 T e (25)

which tends to the radial part of the ground state eigenfunction of the
Schrédinger equation for one-electron atom, ¥y — %Bxe_%B” for A — 1.
With the help of Eq. (17), we are able to get the wave functions for the
excited states.
Another example of Eq. (8) which leads us to the very well-known solu-
tion is
Wh=—-AWE - Wy +C, (26)

where parameters A > 0, and C > 0. Thus,

1 1+4AC 1
W) = 5 + Y o (JVIFAACG - a0)) . (27

where the integration constant

1

=————" (InA 28
= e mA ) (28)
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is the complex number. In this case, we have

1 14+4A 1
Wa(a) = 57 + 8 b (3 (VIF1ACs —ma) ) . (29

and

(=

Yo(z) = e24 cosh <; (\/m.r — lnA)> ) (30)

is the basic wave function without normalization constant. From Eq. (29),
we have Wy = C' — e™* for A — 0 what is the standard expression for the
Morse potential |5].

All potentials resulting from Eq. (8) have a trigonometric form. It means
that they are expressed in terms of the tangent function. If we wish to obtain
potentials interesting from the physical point of view, like the Coulomb
potential, or the Morse potential, we should follow the procedure outlined
above or choose the proper, initial value of the parameters in Eq. (8). It
should be emphasized that every solution of the Schrédinger equation related
to the orthogonal polynomials can be obtained by this method.

5. The new Hamiltonian

The results can be generalized to the form for which this method works [7].
If we take Eq. (8) in the form of

P (W,
L%:MW+££%§=&HN%% (31)

where Ppy1(Wy) is a polynomial in Wy with degree no greater than [ + 1,
Qi (W) is a polynomial in Wy with degree equal to I. R;2;(W)) is a rational
function such that both the numerator and the denominator are polynomials
with degree [ + 2 and [ respectively. Substituting

Wo(z) = Riyp1(tan(¢ - (z — x0))) (32)

into Eq. (31) and adjusting the indices of the sums to get the same powers
of tan(¢ - (z — xzp)), we get the explicit form of Wy. It should be emphasized
that the condition of Eq. (4) must be satisfied. The procedure outlined
above can be applied to the function

Wa(z) = Ripni14n(tan(e - (2 — o)) (33)

and thus the excited state wave functions 1, (x) can be obtained.
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Let us consider the simple equation, being the example of generalized
Eq. (31)
3Wo—1  (Wo—1)»

Wi = Wg = : 34
0 0+ Wo —3 Wo — 3 (34)
where all coefficients has been chosen to simplify calculations.
Hence,
2\/x + i -3
Wo(r) = —F——, (35)
2¢/x + i -1
which gives the correspondig eigenvalue Fy = —1 and the completly new
potential is discovered
2
Vi) = —— for ©>0. (36)
T+ i

Thus, the ground state function, without normalization constant, has the

form of
1
YPo(z) = e TRVt <2\/x +1- 1) . (37)
Substituting
Py (Wh)
Wy = 38
T Qu(Wo) (38)

into Eq. (3) and taking into account Eq. (36), we obtain the unnormalized
wave function

() = e 0TI ot (2,/33 +1- 1) <2,/x +1- 3.74) ;o (39)

where all decimal numbers are approximated and FE; ~ —0.63. It is easy
to show that the latest potential does not fulfil the shape invariance condi-
tion [6], so this new potential family is an example for non-shape-invariant
solvable potentials.

Let us now discuss the question of the explicit form of the Schréodinger
equation. Treating Eq. (31) not as a condition but rather as the transformed
Schrodinger equation and substituting Eq. (2) (for n = 0) into Eq. (31), we
get

! (e
g aialss)-alvh(eia))? = [ B =V (-5 yiara), (10
wU (l’, a)
where the parameter « is usually related to the parameter A in Eq. (31) and
the potential V' has the form of
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4 (‘W) = Rit21 (—m) . (41)

As we see, Eq. (40) is a non-linear differential equation. Taking into account
the previous considerations regarding the quantum oscillator, the Coulomb
potential and the Morse potential, we get the following form of Eq. (40) in
the o — 0 limit:

o(;0)

—(;0) = [Eo v (‘w@:mﬂ bo(;0) (12)

what is the familiar form of the Schrodinger equation, and where non-
linearity is hidden in the form of the potential function.

6. Conclusions

The new method of obtaining solvable potentials has been reviewed in
this paper. The main role in this method plays the Riccati equation which is
a result of the transformed, one-dimensional, stationary Schrodinger equa-
tion. It allows us to emphasize the importance of function Wy known in
a literature as a “superpotential” [2, 5]. By the use of its features, we can
show that the potential is not an arbitrary function of & but rather its form
depends on the function Wy. As a consequence, we can find not only very
well-known solutions of the Schréodinger equation but also a new class of the
solvable potentials. These considerations may help us to identify new classes
of the solvable potentials and may serve as an aid for further investigations
concerning the relationship between solvability of the Schrédinger equation
and the form of the potential.
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