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In this paper, we have analyzed noncommutative (NC) structures in the
case when the NC parameter is not constant. Firstly, it is a variable in the
configuration space making part of the dynamics of the relativistic particle
action. Secondly, through a straightforward approach, we have constructed
quantum scalar fields and its algebra in an NC space-time.
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1. Introduction

The search for the holy grail in theoretical physics is composed of the
main challenges that have dwelt among us since the last century. One of
these challenges is to unify in a single and consistent framework both theories
of quantum mechanics and general relativity. The combination of special
relativity and quantum field theory has already been accomplished through
the Klein–Gordon and Dirac approaches. However, the path to reconcile the
general relativity with the quantum field theory is still a mystery.

This so-called quantization procedure of general relativity has stumbled
onto another theoretical physics challenge, i.e., the infinities (divergences)
that appear in some specific calculations during the quantization process.
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This issue is directly connected to the understanding of the behavior of
quantum fields at the high-energy scale which is also connected to the struc-
ture of space-time at (or near) the Planck scale. The understanding of the
structure of the space-time at this scale is necessary to construct the Hilbert
space inner product, essential to the definition of the particle states. There
are several formalisms that deal with these questions and one of those is the
noncommutative (NC) geometry, which can, for these reasons, be considered
as a theoretical laboratory for quantum gravity.

For example, one attempt to free us from the infinities that appear in
quantum field theory was made by Snyder [1] when he constructed a five-
dimensional NC algebra in order to define a minimum length for space-time
structure. Unfortunately, a little time after the Snyder’s effort, Yang [2]
demonstrated that even in this Snyder’s NC algebra, the divergences are
still there.

This result condemned Snyder noncommutativity (NCY) to be outcast
for more than fifty years until Seiberg and Witten [3] demonstrated that
the algebra resulting from string theory embedded into a magnetic field has
shown itself to have an NC algebra. Since then, we have seen a massive
research production concerning several NC formulations that deserves our
attention and investigation.

In the 1980s, NC geometry was considered as a way to extend the Stan-
dard Model in a number of different ways [4–8]. In condensed matter physics,
NCY appears naturally. For example, NC geometry describes the dynamics
of electrons in a magnetic field at the lowest energy level which is related
to the quantum Hall effect [9, 10]. In matrix models of M-theory, for ex-
ample, compactification leads to NC tori. As we have mentioned above,
the so-called SW map [3] between commutative and NC gauge theories ex-
plained that gauge symmetries, including diffeomorphisms, can be realized
by standard commutative transformations on commutative fields.

This theoretical framework is called NC field theory and it may be a
relevant physical model at scales in between `P (' 1.6 × 10−33cm) and
`LHC (' 2 × 10−18cm). In fact, one of the main threads of research in this
field has been related to studies of energetic cosmic rays.

It was expected that some quantum field theories would be better be-
haved on NC space-time than on ordinary space-time. The interested reader
can find some interesting and encouraging results in [11]. In this manner,
space-time NCY presents an alternative to supersymmetry or string theory.
Besides, it is a useful arena for studying physics beyond the Standard Model,
and also for standard physics in strong external fields. Finally, it sheds light
on alternative lines of attack to address various fundamental issues in QFT.
For instance, it naturally relates field theory to gravity. Since the field the-
ory may be easier to quantize, this may provide significant insights into
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the problem of quantizing gravity. However, in his approach, Snyder postu-
lated an identity between coordinates and generators of the SO(4,1) algebra.
Hence, he promoted the space-time coordinates to the Hermitian operators.

Mathematically speaking, the late 80s and the 90s have shown consid-
erable progress in the NC geometry [12]. The introduction of these new
techniques in QFT was considered in [13], where these approaches, in gen-
eral, use a generalization of the canonical commutation relations [14].

In this paper, we will attack the quantization approaches of theories de-
scribed in NC phase spaces by investigating its dynamics features. Firstly,
we will disclose new characteristics about the NC relativistic particle which
were not analyzed in [15], where the author presented the Dirac’s constraint
point of view. We have used the symplectic structure to show new results
such as Newton’s second law and actual role played by the Lagrangian mul-
tipliers used in [15]. After that, we have constructed straightforwardly the
scalar field and its algebra within Doplicher–Fredenhagen–Roberts (DFR)
quantum gravity scenario [16, 17] in a Lorentz invariant space-time.

To accomplish these tasks, we have organized the paper in the following
way: In Section 2, we have discussed the extended analysis of the NC rela-
tivistic particle in extra dimensions. This model brought interesting results
besides the ones connected directly to what we want to show. In Section
3, we have computed the basic commutation relations for the scalar field
in the DFR phase space. Consequently, we believe that we have filled the
gap that exists in DFR literature which does not see the necessity of an
associated momentum relative to the θ-coordinate. Finally, in Section 4,
the conclusions and perspectives were depicted. We have constructed an
appendix with some explanations about the Moyal–Weyl product.

2. The NC relativistic particle

In [15], the author proposed that the cure for the lack of relativistic
invariance for NC models is to modify the constant feature of the NC
parameter, i.e., the NC parameter would be a dynamical configuration
space variable θµν(τ). Consequently, he has analyzed the NC version for
the D-dimensional relativistic particle with a θ-variable phase space and a
π-momentum.

Here, we are interested in the dynamics of a particle in this NC phase
space. On the other hand, in [15], the author was interested in analyzing
mainly the constraint algebra and quantization via the Dirac bracket ap-
proach. We have calculated the equations of motion and the NC relativistic
acceleration in order to discuss the θconstant =⇒ θvariable duality and its
consequence. We will see through the symplectic structure that, although
pµνθ = 0, ṗµνθ is not zero, which is an interesting and unusual result.
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2.1. Noncommutative relativistic free particle

In this section, since we are interested in the DFR features that exist in
the analyzed model, we will mention only the relative points of [15] where
more details can be found.

The action of the free relativistic particle in this NC configuration space is

S(x, θ) =

∫
dτ

[
ẋµvµ −

e

2

(
v2 −m2

)
+

1

θ2
v̇µθ

µνvν

]
, (1)

where θ2 ≡ θµνθµν , η = diag(+,−, . . . ,−). pµ, πµ, pe, pµνθ are the conjugate
momenta associated to xµ(τ), vµ(τ), e(τ) and θµν(τ), respectively. As we
have said just above, it is a D-dimensional space-time and µ, ν are the
space-time indices. To clarify in detail, the “e” index in pe means that pe
is the conjugate momenta associated with the e(τ) phase-space coordinate.
An analogous meaning has the index θ in pµνθ .

We will use the fundamental algebra [15] defined by

{xµ, xν} = − 2

θ2
θµν , {xµ, pν} = ηµν , {vµ, πν} = ηµν , (2)

{xµ, vν} = ηµν , {xµ, πν} = − 1

θ2
θµν , (3){

θµν , p
ρσ
θ

}
= −δ[ρµ δσ]ν , (4){

xµ, pρσθ
}

= −
{
πµ, pρσθ

}
=

1

θ2
ην[ρvσ] − 4

θ4
(θv)µθρσ . (5)

This system is singular and has the following primary constraints

Gµ = pµ − vµ , (6)

Tµ = πµ − 1

θ2
θµνvν , (7)

pµνθ = 0 , (8)
pe = 0 (9)

and we can write the total Hamiltonian as

H =
e

2

(
v2 −m2

)
+ λ1µG

µ + λ2µT
µ + λepe + λθµνp

µν
θ , (10)

where the λs are the Lagrangian multipliers. Using the time consistency
condition (i.e., χ̇ = {χ,H} = 0, where χ is a constraint), we can obtain
the secondary constraint

K ≡ v2 −m2 = 0 (11)
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and other relations that allow us to determine the Lagrangian multipliers

Ġµ = {Gµ, H} = 0 =⇒ λµ2 = 0 , (12)

Ṫµ = {Tµ, H} = 0 =⇒ λµ1 = evµ +
2

θ2
(λθv)

µ − 4

θ4
(θλθ) (θv)

µ . (13)

If we substitute the fixed Lagrangian multipliers into the Hamiltonian, we
have that

H =
e

2

(
p2 −m2

)
+

(
evµ +

2

θ2
(λθv)µ −

4

θ4
(θλθ) (θv)µ

)
× (pµ − vµ) + λepe + λθµνp

µν
θ (14)

and it can be seen that we were left with two undetermined Lagrangian
multipliers.

Let us define the following symplectic variables αi as (xi, pi, θij , πij).
We can write the generalized Poisson bracket for this system in a compact
and symplectic form as

{F,G} =
{
αi, αj

} ∂F
∂αi

∂G

∂αj
, (15)

where we are using the sum rule for repeated indices. In the same way, we
will define the following symplectic variables

ξµ → (xµ, pµ) ,

ζµ → (vµ, πµ) ,

χµ → (e, pe) ,

Ωµν → (θµν , pθµν) . (16)

We can write the generalized Poisson brackets for this system in a compact
and symplectic form as

{F,G} = {ξµ, ξν} ∂F
∂ξµ

∂G

∂ξν
+ {ζµ, ζν} ∂F

∂ζµ
∂G

∂ζν

+ {χµ, χν} ∂F
∂χµ

∂G

∂χν
+ {Ωµν , Ωρσ} ∂F

∂Ωµν

∂G

∂Ωρσ

+ {ξµ, ζν} ∂F
∂ξµ

∂G

∂ζν
+ {ξµ, χν} ∂F

∂ξµ
∂G

∂χν

+ {ξµ, Ων} ∂F
∂ξµ

∂G

∂Ων
+ {χµ, ζν} ∂F

∂χµ
∂G

∂ζν

+ {χµ, Ων} ∂F
∂χµ

∂G

∂Ων
+ {ζµ, Ων} ∂F

∂ζµ
∂G

∂Ων
. (17)
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According to Eq. (17), we can obtain the following equation of motion for
xµ as

ẋµ = {xµ, H}

= {xα, pβ}
∂xµ

∂xα
∂H

∂pβ
+ {pβ, xα}

∂xµ

∂pβ

∂H

∂xα
+
{
xα, xβ

} ∂xµ
∂xα

∂H

∂xβ

+ {xα, pθρσ}
∂xµ

∂xα
∂H

∂pθρσ
+ {pθρσ, xα}

∂xµ

∂pθρσ

∂H

∂xα
(18)

⇒ ẋµ = epµ +
2

θ2
(λθv)

µ − 4

θ4
(θλθ) (θv)

µ , (19)

where we have shown in (18) the nonzero terms of (17). For pµ, we have that

ṗµ = {pµ, H}

= {xα, pβ}
∂pµ

∂xα
∂H

∂pβ
+ {pβ, xα}

∂pµ

∂pβ

∂H

∂xα
⇒ ṗµ = 0 . (20)

Analogously, we can compute the equations of motion for the other variables,
namely,

θ̇µν = − 2λµνθ , (21)
v̇µ = 0 , (22)
ė = λe , (23)

ṗe = − v · p +
1

2

(
v2 + m2

)
, (24)

π̇µ =
4

θ4
(θλθ) (θ v)

µ − 1

θ2
ηµ[ρvσ] λθρσ , (25)

ṗµνθ =
8

θ4

[
θµν

θ2
(θλθ)(θv)

σpσ − λµνθ (θv)σpσ − θµν(λθv)σpσ

+
1

2
(θλθ)v

[µpν]
]
. (26)

Finally, in the same way, we can calculate the acceleration in this NC
phase space, namely, ẍµ = {ẋµ, H}, which brings us the result

ẍµ =
8

θ4

[
(θλθ) (λθv)

µ − 4

θ2
(θλθ)

2 (θv)µ + λ2(θv)µ − (θλθ)(λθv)
µ

]
,

(27)
where λ2 = λθµνλ

µν
θ . This last result is very interesting since the equation of

motion (21) shows us that if we have that θ = constant, we have λθ = 0. In
this way, we will not have pθ in the Hamiltonian written in (14). However, we
can easily see from Eq. (26) that we have that λθ = 0 =⇒ ṗθ = 0 =⇒ pθ =
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constant, but the important fact is that the phase space for the Hamiltonian
in Eq. (14) will not have pθ as a dynamical variable. If θ is not constant,
the NC phase space contains pθ. Consequently, if θ is constant, we do not
have pθ within the phase space. Notice that although the λs are auxiliary
variables in order to construct the total Hamiltonian, they are connected to
the momenta by construction of the constraints formalism.

Otherwise, if θ = constant in Eq. (27), the acceleration is zero. This is an
interesting result since we do not have any time derivative of θ in Eq. (27)
but this result is a consequence of the nulification of λθ. So, we can say
that, although it is not part of the phase-space structure, the Lagrangian
multiplier is underlying for the system’s dynamics. It was not explored
in [15]. However, the time derivative of xµ in Eq. (19) is not zero when
λθ = 0 neither it is constant since e(τ) is variable (pµ is constant since ṗµ
is identically zero). Although it was not explored in [15], the author has
claimed that θ can actually be made constant by exploiting the additional
local symmetry of the action in (1). So, as we explained just above, the
corrections in Newton’s second law in (27) can be gauged away, since on the
condition θ = constant =⇒ λθ = 0 scenario, only the λ2-term survives.

3. Quantum NC scalar field theory

Motivated by the dynamical analysis of a system in NC phase space, let
us analyze from now on the scalar fields in a θ-variable NC approach, as
we have mentioned above, the so-called DFR formalism [16, 17]. To clarify,
in their original papers, DFR have stressed that their formalism is based
only on the classical gravitational collapse in general relativity and on stan-
dard quantum principles. Namely, it does not require any quantum gravity
scenario. The approach here is very different from the ones investigated
in [18–20]. Here, we will show a direct approach to construct the scalar
field. The objective here is to construct auxiliary functions which will help
us to build basic fields in DFR formalism.

3.1. Preliminaries

Let us begin this section by defining the manifold Σ used in [16, 17]. Let
us follow [16, 17] in order to define the manifold Σ where the so-called joint
eigenvalues of the commuting selfadjoint operators θµν dwell. In [16, 17],
the manifold Σ can be decomposed so that Σ = Σ+ ∪ Σ−, where

Σ± =
{
σ|σµν = −σνµ , σ = (~e, ~m) ; e2 = m2 , ~e · ~m = ±1

}
,
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where ~e and ~m are the “electric” and “magnetic” parts of θµν . In this way,
we can write that

1
2 θµν θ

µν = m2 − e2 and 1
4 θ

µν(∗θµν) = ~e · ~m ,

where θµν(∗θµν) = 1
2εµνλρθ

µνθλρ, the relations given by e2 = m2 and
(~e · ~m)2 = I, and {σµν} = (~e, ~m) is the spectrum of θµν . Σ+ and Σ−
are connected manifolds [16, 17] and they are topologically equivalent to the
tangent bundle TS2 of the unit sphere S2 in R3. If ~e = ± ~m, they must be
of length one, and span the base Σ(1) of Σ. So, Σ can be understood as
TΣ(1) [16, 17].

In DFR algebra, the simplest condition says that xµ and θµν commute.
Besides, we have the quantum conditions given by [16, 17]

θµν θ
µν = 0 ,

[
1
4θµν (∗θ

µν)
]2

= I , [x̂µ, [x̂ν , x̂λ]] = 0 , (28)

where, in generic units, the identity operator above would be multiplied
by λ8P.

Let us consider that (28) is valid in the more restrictive Weyl form [16, 17]

eiαµx̂
µ
eiβµx̂

µ
= e

1
2
αµθµνβν ei(α+β)µx̂

µ
, (29)

where eiαµx̂µ are unitary and continuous operators in the real four-vector α.
Considering our manifold Σ, we can say that the representations that

satisfy (29) correspond to the representations κ of a C∗-algebra C gener-
ated by F functions, which are continuous and vanish at infinity from Σ to
L1(R4). We can construct a correspondence equation given by

κ̂(F ) = g(θ)

∫
f(α) eiαµx̂

µ
d4x ,

where F : σ ∈ Σ → g(σ) f , with g ∈ C0(Σ) and f ∈ L1 (R4). Notice
that C depicts the quantum space-time and substitutes the commutative
C∗-algebra C0(R4) [16, 17]. It is important to explain that the C∗-algebra
C can be connected to the algebra of all continuous functions that vanish
at infinity from Σ to the compact operators algebra over a fixed separable
infinite dimensional Hilbert space.

Using the von Neumann–Wigner–Moyal equation, the Weyl relations
permit us to compute the functions of the quantum position operator x̂µ

f̂(x̂) =

∫
f̃(α) eiαµx̂

µ
d4α ,

where
f̃(α) =

1

(2π)2

∫
f(x) e−iαµx

µ
d4x
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is an L1 function of α and these operators form a linear subspace which is
not stable under multiplication. C can be spanned, as a normed vector space,
by elements of the form of g(θ)f̂(x̂), where g ∈ C0(Σ) and f ∈ L1(R4). In a
moment, we will use these definitions in Σ in order to construct scalar fields
in DFR space-time. We will see that the αµ elements are, in fact, the pµ
conjugated to xµ and the πµν conjugated to θµν .

3.2. The DFR scalar field

Using the concepts defined above, we will construct the first basic step
of a QFT with the phase-space definitions established above. Since we have
shown that the DFR and DFR-extended phase space are, in fact, the same,
we will use the name DFR to define the formalism embedded in the complete
phase space (x, p, θ, π).

In papers published by two of us [18–20], one can see that the construc-
tion of the commutation relations between the bosonic/fermionic fields with
themselves and with its associated momenta are missing. It is our intention
in this section to fill this gap. In other words, we will demonstrate pre-
cisely the basic commutation relations using only the DFR elements. The
fermionic construction is an ongoing research that will be published in a
near future.

In other papers which consider the DFR formalism or θ-variable ap-
proaches, such as [15–17, 21–26] for example, we can find this basic step in
an indirect way where the associated momenta are not defined. The quan-
tity used to construct the scalar field, which was used as being associated
with the variable θ, is an ill-defined scalar quantity.

After these considerations, let us employ the von Neumann–Wigner–
Moyal formula mentioned in the last subsection to construct the field oper-
ators over the full phase-space (x, p, θ, π). So, we can write a map between
a member of the operator algebra and an ordinary function

f̂
(
x̂, θ̂
)
= Tr

[
ei(p·x̂+π·θ̂) f(x, θ)

]
=

∫
d4pd6π ei(p·x̂+π·θ̂) f̃(p, π) , (30)

where f̃ can be defined by

f̃(p, π) =

∫
d4x

(2π)4
d6θ

(2π)6
e−i(p·x+π·θ) f(x, θ) , (31)

where p · x̂ = pµx̂
µ and π · θ̂ = 1

2 πµν θ̂
µν (the 1/2 factor avoids the sum

over repeated terms), f(x, θ) is the corresponding function to the operator
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f̂(x̂, θ̂) and the integration measures are

d6π = dπ01 dπ02 dπ03 dπ12 dπ13 dπ23 ,

d6θ = dθ01dθ02dθ03dθ12dθ13dθ23 . (32)

The details about θ and π are described in [27] (and references therein),
where the θ-variable and π are not necessarily connected as we have discussed
so far.

Since the momentum πµν is an element of the NC phase space, let us
construct the operator field in this DFR algebra in Weyl representation [21]

φ̂
(
x̂, θ̂
)
=

∫
d4p

(2π)4
d6π

(2π)6
φ̃(p, π) ei(p·x̂+π·θ̂) , (33)

where φ̃(p, π) is the Fourier transform of φ̂(x̂, θ̂) and d6π is a Lorentz in-
variant measure given in (32). Notice that the difference between the issues
explored here and in [21] is that now we know that the phase space is de-
scribed by (x, p, θ, π).

From the commutation relation [x̂µ, x̂ν ] = iθ̂µν , one can define the
shifted coordinate (Bopp shift) operator

X̂µ = x̂µ +
i

2
θ̂µν p̂ν , (34)

which commute, namely, [X̂µ, X̂ν ] = 0.
The X̂µ-operator commutes with θ̂µν , X̂ν and π̂µν operators, and the

commutation relation for p̂ ν remains zero. Since X̂µ commutes with itself,
we can define a basis |X, θ〉 = |X〉 ⊗ |θ〉 in the Hilbert space, such that

X̂µ|X, θ〉 = Xµ|X, θ〉 and θ̂µν |X, θ〉 = θµν |X, θ〉 . (35)

Notice that, obviously, |X〉 is an eigenvector of X̂µ and not of x̂µ. In order
to obtain a Fourier representation of a scalar φ from the operator φ̂, let us
make the diagonalization operation [21] using (33)

φ̃(x, θ) = 〈X, θ| φ̂
(
x̂, θ̂
)
|X, θ〉 =

∫
d4p

(2π)4
d6π

(2π)6
φ(p, π) e−i(p·x+π·θ) , (36)

where we have used that p · X̂ = p · x̂.
The Lagrangian density of a real spin-0 field φ with mass m can be

written as [27]

L =
1

2
∂µφ ? ∂

µφ +
λ2

4
∂µνφ ? ∂

µνφ − 1

2
m2 φ ? φ , (37)
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where ∂µν = ∂/∂θµν and λ is a parameter with length dimension. It is
important to remember that when Lagrangian (37) is integrated throughout
the DFR space-time, the Moyal product in the quadratic terms reduces to
usual product (see Appendix). Therefore, the action in (37) gives us the
Klein–Gordon equation (

2 + λ22θ + m2
)
φ = 0 , (38)

where 2 = ∂µ∂
µ and 2θ = 1

2 ∂µν∂
µν are the four- and six-dimensional

Laplace operators, respectively. The canonical conjugate momentum as-
sociated with φ is given by

π(x, θ) =
∂L

∂φ̇(x, θ)
= φ̇(x, θ) , (39)

which leads us to the Hamiltonian density

H =
1

2
π(x, θ) ? π(x, θ) +

1

2
∇φ(x, θ) ?∇φ(x, θ) + λ2

2
∇θφ(x, θ) ?∇θφ(x, θ)

+
1

2
m2φ(x, θ) ? φ(x, θ) , (40)

where ∇θ = 1
2 ∂

ij . The conserved field energy is defined by the integral of
the Hamiltonian density in the space (x, θ)

H=

∫
d3xd6θ

1

2

[
π2(x, θ) + (∇φ(x, θ))2+ λ2

(
∇θΦ̂(x, θ)

)2
+m2 φ2(x, θ)

]
.

(41)
In [21], the author has written an incomplete φ̂(x, θ) using the Weyl represen-
tation. We say incomplete because now we know that θµν has an associated
momentum given by πµν . In this way, we can expand the field φ(x, θ) with
respect to a basis. Let us use the set of plane waves such as

up,π(x, θ) = Np,π e
i(p·x+π·θ) , (42)

which means that we can write the Fourier modes as

φ(x, θ, t) =

∫
d3pd6π Np,π e

i(p·x+π·θ) ap,π(t) , (43)

where Np,π is a normalization constant. If we substitute Eq. (43) into (38),
we will have the following equation of motion

äp,π(t) + ω 2
p,π ap,π(t) = 0 , (44)
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which has a general solution given by

ap,π(t) = a
(1)
p,π e

−iωp,πt + a
(2)
p,π e

iωp,πt , (45)

and the dispersion relation is

ωp,π =

√
p 2 +

λ2

2
π2 + m2 , (46)

and from (45), we can easily see that a(1)p,π and a
(2)
p,π are constants in time.

The real-valued feature of the classical field shows us that, of course, the
operator is hermitian, hence,(

a
(1)
p,π

)†
= a

(2)
−p,−π , (47)

which is a standard constraint. The free field can be expanded in terms of
creation and annihilation operators, namely,[

âp,π , â
†
p′,π′

]
= δ3(p− p′) δ6(π − π′) , (48)[

âp,π , âp′,π′
]
=
[
â†p,π , â

†
p′,π′

]
= 0 . (49)

One can ask if the field quanta will obey a kind of Bose–Einstein statistics
in this NC phase space. For the time being, we will associate both ap,π
and a†p,π with annihilation and creation operators, respectively, in the DFR
formalism. Therefore, the field φ in (43) can be promoted to the field-
operator Φ̂ expanded in this basis as

Φ̂(x, θ, t)=

∫
d3p d6πNp,π

[
âp,π e

i(p·x+π·θ−ωp,πt) + â†p,π e
−i(p·x+π·θ−ωp,πt)

]
.

(50)
Thus, we construct the conjugate momentum operator Π̂, that is, Π̂(x, θ, t)=
˙̂
Φ(x, θ, t), so we have that

Π̂(x, θ, t) =

∫
d3pd6πNp,π (−iωp,π)

×
[
âp,π e

i(p·x+π·θ−ωp,πt) − â†p,π e−i(p·x+π·θ−ωp,πt)
]
. (51)

We can construct the Moyal commutation relation between two field-
operators in equal times as[
Φ̂(x, θ, t) , Φ̂(x′ , θ′, t)

]
?
:= Φ̂(x, θ, t) ? Φ̂

(
x′, θ′, t

)
− Φ̂

(
x′, θ′, t

)
? Φ̂(x, θ, t)

(52)
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and substituting Eq. (50) into Eq. (52), and using relations (48) and (49),
we obtain that[

Φ̂(x, θ, t), Φ̂
(
x′, θ′, t

)]
?
=

∫
d9P

∫
d9P ′Np,πNp′,π′ (−2i) sin

(
p ∧ p′

2

)
×
[
âp,π âp′,π′ ei(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)

− â†p′,π′ âp,π e
i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e−i(p·x−ωp,π t−p
′·x′+ωp′,π′ t+π·θ−π′·θ′)

+ â†p,π â
†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)
]
, (53)

where d9P := d3p d6π, and we have defined the product p ∧ p′ = θµνpµ p
′
ν .

Using the calculation above, the Moyal-commutation relation between the
field operator Φ̂ and momenta Π̂ is given by[

Φ̂(x, θ, t), Π̂
(
x′, θ

′
, t
) ]

?
=

∫
d9P N 2

p,π (iωp,π)

×
[
eip·(x−x

′)+iπ·(θ−θ′) + e−ip·(x−x
′)−iπ·(θ−θ′)

]
+

∫
d9P

∫
d9P ′Np,πNp′,π′ (iωp′,π′) (2i) sin

(
p ∧ p′

2

)
×
[
âp,π âp′,π′ ei(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)

+ â†p′,π′ âp,π e
i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e−i(p·x−ωp,π t−p
′·x′+ωp′,π′ t+π·θ−π′·θ′)

+ â†p,π â
†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)
]
. (54)

If we choose the normalization constant such as

Np,π =
1√

2 (2π)9 ωp,π

, (55)

the result in (54) is simplified as
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[
Φ̂(x, θ, t), Π̂

(
x′, θ

′
, t
) ]

?
= i δ3

(
x− x′

)
δ6
(
θ − θ′

)
−
∫

d9P d9P ′

(2π)9

√
ωp′,π′

ωp,π
sin

(
p ∧ p′

2

)
×
[
âp,π âp′,π′ ei(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)

+ â†p′,π′ âp,π e
i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e−i(p·x−ωp,π t−p
′·x′+ωp′,π′ t+π·θ−π′·θ′)

+ â†p,π â
†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)
]
, (56)

which is the opposite direction followed in [27] for example, and the delta
functions are assumed to have the same form as the ones used in [27]. Finally,
we have the commutation relation involving the momentum operators[

Π̂(x, θ, t), Π̂(x′, θ
′
, t)
]
?
=

∫
d9P

∫
d9P ′Np,πNp′,π′ (−iωp,π)

(
−iωp′,π′

)
× (−2i) sin

(
p ∧ p′

2

)[
âp,π âp′,π′ ei(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)

+ â†p′,π′ âp,π e
i(p·x−ωp,π t−p′·x′+ωp′,π′ t+π·θ−π′·θ′)

− â†p,π âp′,π′ e−i(p·x−ωp,π t−p
′·x′+ωp′,π′ t+π·θ−π′·θ′)

+ â†p,π â
†
p′,π′ e

−i(p·x−ωp,π t+p′·x′−ωp′,π′ t+π·θ+π′·θ′)
]
. (57)

Notice that what we have done here was to demonstrate the canoni-
cal commutation relations using the field operators constructed with DFR
phase-space definitions. These canonical relations involving the Moyal
product are not equal to the usual case, in which we have obtained com-
binations between creation and annihilation operators. It is clear that in
the commutative limit (θ = 0), these terms involving â and â† are zero nat-
urally. If we use the vacuum properties of the operators â and â†, i.e., if we
define a vacuum state |0〉 such that âp,π|0〉 = 0, the expected value of the
previous commutator relations in the vacuum state can be given by

〈0|
[
Φ̂(x, θ, t), Φ̂

(
x′, θ′, t

)]
?
|0〉 = 0 ,

〈0|
[
Φ̂(x, θ, t), Π̂

(
x′, θ′, t

)]
?
|0〉 = i δ3

(
x− x′

)
δ6
(
θ − θ′

)
,

〈0|
[
Π̂(x, θ, t), Π̂

(
x′, θ′, t

)]
?
|0〉 = 0 . (58)
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We can see that the result in (58) corroborates the construction of the oper-
ator in [x̂µ, x̂ν ] = iθµν with a convenient normalization choice and obeying
the commutation operators. We believe that this formalism completes the
ones depicted in [21] since in it the existence of a NC six-dimensional phase
space is missing. Concerning [27], the path here is different since we have
demonstrated that the field operator in an NC space-time can be written in
terms of plane waves as

up,π(x, θ) =
e−i(p·x+π·θ)√
2 (2π)9 ωp,π

. (59)

When we substitute Eq. (59) in the Fourier expansion in Eq. (50), the same
can be accomplished for Π̂.

We can apply the quantization to the field energy (41), so the quantized
Hamiltonian operator is given by

Ĥ =

∫
d3xd6θ 1

2

×
[
Π̂2(x, θ, t) +

(
∇Φ̂(x, θ, t)

)2
+
(
λ∇θΦ̂(x, θ, t)

)2
+m2 Φ̂2(x, θ, t)

]
. (60)

Using the plane wave expansion of the operators Φ̂ and Π̂, the quantized
energy in terms of the creation and annihilation operators is given by

Ĥ =

∫
d3p d6π ωp,π

(
a†p,π ap,π +

1
2

)
, (61)

so that we can obtain the vacuum energy E0

E0 = 〈0|Ĥ|0〉 =
∫

d3p d6π 1
2 ωp,π . (62)

We can use the Hamiltonian operator (61), and operators (50) and (51) to
calculate the Hamilton’s equations of motion as

˙̂
Φ(x, θ, t) = −i

[
Φ̂(x, θ, t), Ĥ

]
= Π̂(x, θ, t) (63)

and
˙̂
Π = −i

[
Π̂(x, θ, t), Ĥ

]
=
(
∇2 + λ2∇2

θ − m2
)
Φ̂(x, θ, t) , (64)

where we have used conveniently integrations by parts. Notice that, using
Eqs. (63) and (64), we can construct the NC Klein–Gordon equation

¨̂
Φ(x, θ, t) =

(
∇2 + λ2∇2

θ −m2
)
Φ̂(x, θ, t) , (65)

which shows clearly a different path from [21] since the author did not con-
sider the existence of a canonical momentum.
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4. Conclusions

The investigation of physical theories that occur in NC space-time has
brought great interest through the last years and one of the reasons for
that interest is the hope to increase the comprehension about gravity at the
Planck scale.

The existence of a parameter that allows the appearance of NC terms
that contribute perturbatively in well-known theories acts as a theoretical
laboratory to study the physics of the very early Universe. It motivates
theoretical physicists to pursue this NC knowledge to search for a way to
unify gravitation and quantum mechanics.

In other words, we hope to find an algebraic unified model [28] or an
arguably understanding of a quantum space as the beginning of a quantum
gravity theory which avoids current problems and is free of singularities, for
instance. The seminal objective would be that the deformation of space-
time would act as a regularization scheme which would keep the algebraic
properties of the theory.

It is well-known that basically, we can classify the NC theories into those
where the NC parameter is constant and those where it is not constant.
Of course, we are talking only about the theories where the results of the
position coordinates commutation rely on the NC parameter. The main
motivation to have a non-constant NC parameter is to recover the Lorentz
invariance which is lost in a constant parameter structure.

In order to understand the NC formulations where the θ-parameter is not
constant we, in this paper, have analyzed systems where the θ-parameter
is a variable of the NC phase space. The first system is the relativistic
particle studied in [15]. The focus there was on the Dirac constraint analysis.
Here, we have used symplectic formulation all the way to obtain all the
equations of motion and to obtain also the Newton’s second law in this NC
structure. We have seen that the Lagrangian multipliers, having a kind
of secondary role in a constrained approach, are dynamically fundamental
since, in the commutative limit (θ = 0), they are also zero and, consequently,
the acceleration is also zero. In other words, the NC relativistic particle
shows, besides the θconstant −→ θvariable duality, another interesting result.
Since the equations of motion have shown that for θ = constant we have the
multiplier λθ = 0 and this value zeroes the NC acceleration, the velocity is
not constant since it has a parameter that is time-dependent. Besides, we
have calculated here that ė 6= 0, which confirms that, following the equations
of motion, the velocity ẋ is not constant. It is important to compute ė
because although it is defined as e = e(τ) its calculation could result as
zero, which would show a paradox, but it did not happen.
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After that, we have considered the analysis of another approach where
the NC parameter is not constant, the well-known DFR formalism. Using
the formulation, we have constructed the scalar field algebra and the Klein–
Gordon equation. This procedure is completely different from the ones in
the literature. We believe that it is more natural to obtain scalar fields in
this way.

As a perspective, we can analyze other θvariable algebras different from
DFR (of course) to verify if the behavior is the same. Another possible
research is to construct the fermion DFR QFT. It is an ongoing research
and it will be published elsewhere.

E.M.C.A. thanks CNPq (Conselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico), Brazilian scientific support federal agency, for partial
financial support, grants numbers 302155/2015-5 and 442369/2014-0, and
the hospitality of the Theoretical Physics Department at the Federal Uni-
versity of Rio de Janeiro (UFRJ), where part of this work was carried out.

Appendix

The Moyal–Weyl product

To investigate field theories defined in spaces with NC variables cor-
responding to deformations of flat spaces as e.g. the Euclidean plane or
Minkowski space Md, one must replace the (commuting) flat space space-
time coordinates by Hermitian operators x̂µ (with µ = 0, 1, . . . , (d−1)) [28].
We consider a canonical structure defined by the following algebra

[x̂µ, x̂ν ] = iθµν , [θµν , x̂ρ] = 0 . (A.1)

The simplest case is when the θµν matrix is constant, which means that we
have only the first commutation relation of (A.1). Furthermore, it is real
and antisymmetric. In natural units, where ~ = c = 1, it can be easily seen
from (A.1) that it has squared mass dimension.

In order to construct the perturbative field theory formulation, it is
more convenient to use fields Φ(x) (which are functions of ordinary commut-
ing coordinates) instead of operator valued objects like Φ̂(x̂). Considering
the properties (A.1), one must redefine the multiplication law of functional
(field) space. One, therefore, defines the linear map f̂(x̂) 7−→ S[f̂ ](x), called
the symbol of the operator f̂ , and can then represent the original operator
multiplication in terms of the so-called star products of symbols as

f̂ ĝ = S−1
[
S
[
f̂
]
? S[ĝ]

]
, (A.2)
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(see, for example, references [7, 8]). By using the Weyl-ordered symbol
(which corresponds to the Weyl-ordering prescription of the operators), one
can arrive at the following definitions, with S[f̂ ](x) = Φ(x),

Φ̂(x̂) ←→ Φ(x),

Φ̂(x̂) =

∫
ddk

(2π)d
Φ̃(k) eik·x̂,

Φ̃(k) = Tr
[
Φ̂(x̂) e−ik·x̂

]
=

∫
ddx Φ(x) e−ik·x , (A.3)

where k is a real variable, and x̂ is the position operator. For any two
arbitrary scalar fields Φ̂1 and Φ̂2, one can therefore write that1

Φ̂1(x̂) Φ̂2(x̂) =

∫
ddk1
(2π)d

∫
ddk2
(2π)d

Φ̃1(k1) Φ̃2(k2) e
ik1·x̂ eik2·x̂

=

∫
ddk1
(2π)d

∫
ddk2
(2π)d

Φ̃1(k1) Φ̃2(k2) e
i(k1+k2)·x̂− 1

2
[x̂µ,x̂ν ] k1µk2ν

=

∫
ddk1
(2π)d

∫
ddk2
(2π)d

Φ̃1(k1) Φ̃2(k2) e
i(k1+k2)·x̂− i

2
θµνk1µk2ν .

(A.4)

Hence, one has the following Weyl–Moyal correspondence [3, 7, 8]

Φ̂1(x̂) Φ̂2(x̂)←→ Φ1(x) ? Φ2(x) , (A.5)

where, using relation (A.1) to replace the commutator in the exponent of
(A.4), the generalized Moyal–Weyl star product is given by

Φ1(x) ? Φ2(x) = Φ1(x) exp
(
i

2

←−
∂ xµθ

µν−→∂ yν
)
Φ2(y)

∣∣∣
x=y

. (A.6)

This means that we can work in the same way as in an usual commutative
space for which the multiplication operation is modified by the star product
(A.6). For the ordinary commuting coordinates, this implies2 that

[xµ, xν ]? = iθµν , [θµν , xρ]? = 0 . (A.7)

At this point, one also has to mention that the commutation relations (A.1)
between the coordinates explicitly break Lorentz invariance because of the
fact that we assumed that θ is a constant matrix [3, 7, 8].

1 One has to use the Baker–Campbell–Hausdorff formula, as well as the relations in
(A.1).

2 The Weyl bracket is defined as [A,B]? = A ? B −B ? A.
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Some other possibilities for a non-constant θ are, for example, θµν =
Cµνρ xρ (Lie algebra) or θµν = Rµνρσ xρ xσ (quantum space structure) —
see, for instance, references [7, 8] for a detailed discussion about these two
approaches.

Another solution of this problem leads us to the NC formulation of the
space-time used here which was formulated by Doplicher, Fredenhagen and
Roberts (DFR) [16, 17], which is based on general relativity and quantum
mechanics arguments. This formalism recovers Lorentz invariance through
the promotion of θµν to be a standard coordinate of this extra dimensional
system. Of course, being the coordinate, the algebra turns out to be, to-
gether with Eq. (A.1),

[x̂µ, p̂ν ] = iηµν ,
[
x̂µ, θ̂µν

]
= [p̂µ, p̂ν ] =

[
θ̂µν , θ̂ρλ

]
= 0 , (A.8)

which completes the basic DFR algebra.
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