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In this work, we study the Friedmann–Robertson–Walker cosmology in
which a Chaplygin gas is coupled to a non-linear scalar field in the frame-
work of the Hořava–Lifshitz theory. In writing the action of the matter
part, we use the Schutzs formalism so that the only degree of freedom of
the Chaplygin gas plays the role of an evolutionary parameter. In a min-
isuperspace perspective, we construct the Lagrangian for this model and
show that in comparison with the usual Einstein–Hilbert gravity, there are
some correction terms coming from the Hořava theory. In such a set-up
and by using some approximations, the classical dynamics of the model
is investigated and some discussions about their possible singularities are
presented. We then deal with the quantization of the model in the context
of the Wheeler–DeWitt approach of quantum cosmology to find the cosmo-
logical wave function. We use the resulting wave functions to investigate
the possibility of the avoidance of classical singularities due to quantum
effects.
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1. Introduction

Various modern cosmological theories such as grand unified theories im-
ply the existence of the classical and semiclassical scalar fields [1]. In cos-
mological viewpoint, scalar–tensor models have attracted much attention
in which a non-minimal coupling appears between the space-time geometry
and a scalar field [2–5]. This is due to the fact that various research ar-
eas in cosmology such as spatially flat and accelerated expanding universe
† Corresponding author: b.vakili@iauctb.ac.ir
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at the present time [6–8], inflation [9, 10], dark matter and dark energy
[11, 12], and many other behaviors can be explained phenomenologically
by the scalar fields. Cosmological models are usually described by a single
scalar field with a canonical kinetic term in the form of 1

2g
µν∂µφ∂νφ and

a self-interaction potential V (φ) where the scalar field is often minimally
coupled to gravity. However, in scalar–tensor theories, the scalar field is not
simply added to the action. Indeed, it is added to the tensor gravitational
field by a non-minimal coupling term [13].

In recent years, the so-called Hořava–Lifshitz (HL) gravity theory, pre-
sented by Hořava, is proved to be power-countable renormalizable. It is
based on the anisotropic scaling of space x and time t as

x→ bx , t→ bzt , (1)

where b is a scaling parameter and z is the dynamical critical exponent. No-
tice that for z = 1, the standard relativistic scale invariance obeying Lorentz
symmetry is recovered in the IR limit. However, the UV gravitational the-
ory implies z = 3 [14–17]. Due to the asymmetry of space and time in HL
theory, it is common to use the Arnowitt–Deser–Misner (ADM) formalism
to represent the space-time metric gµν(t,x), in terms of three-dimensional
metric γab(t,x), shift vector Na(t,x) and the lapse function N(t,x) as [18]

gµν(t,x) =

(
−N2(t,x) +Na(t,x)Na(t,x) Nb(t,x)

Na(t,x) γab(t,x)

)
. (2)

If the lapse function is a function of t only, the theory is projectable, oth-
erwise, in the case where N is a function of (t,x), theory is called non-
projectable. General cases in which the lapse function is taken as a non-
projectable function are studied in Refs. [19, 20]. However, we assume that
the lapse function is constrained to be a function only of the time coordinate
N = N(t) [15].

The most general action for HL gravity (without the detailed balance
condition) is given by SHL = SK + SV , where SK is kinetic part

SK ∼
∫

d4x
√
−g
(
KijK

ij − λK2
)
, (3)

in which Kij is the extrinsic curvature tensor (with trace K) defined by

Kij =
1

2N
(γ̇ij −∇iNj −∇jNi) . (4)

Also, for the potential part, the following general form is proposed:

SV =

∫
d4x
√
−g V [γij ] , (5)
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in which

V [γij ] = g0ζ
6 + g1ζ

4R+ g2ζ
2R2 + g3ζ

2RijR
ij

+g4R
3 + g5RRijR

ij + g6R
i
jR

j
kR

k
i

+g7R∇2R+ g8∇iRjk∇iRjk . (6)

The constants λ and gi (i = 0, 1, . . . , 8) in the above relations denote the
HL corrections to the usual Einstein gravity and ζ is introduced to make
the constants gks dimensionless. Under these conditions, the full HL action
that we shall study is [21–23]

SHL =
M2

Pl

2

∫
M

d4x
√
−g
[
KijK

ij − λK2 +R− 2Λ

− g2
M2

Pl

R2 − g3
M2

Pl

RijR
ij − g4

M4
Pl

R3 − g5
M4

Pl

RRijR
ij

− g6
M4

Pl

RijR
jkRik −

g7
M4

Pl

R∇2R− g8
M4

Pl

∇iRjk∇iRjk
]
, (7)

in which MPl = 1√
8πG

and we have set c = 1, ζ = 1, Λ = g0M
2
Pl/2 and

g1 = −1.
All cosmological evidences have revealed that the universe is undergoing

an accelerated expansion which can be described by exotic cosmic fluid, the
so-called dark energy, one of the first models of the cosmological constant.
On the other hand, scalar fields play an important role in unified theories
of interactions and also in inflationary scenarios in cosmology. Indeed, a
rich variety of dark energy and inflationary models can be accommodated
phenomenologically by scalar fields in which the inflatons produce the initial
acceleration. Another attempt, originally raised in the string theory [24], is
to change the equation of state from an ordinary matter to the Chaplygin
gas, an exotic fluid with negative pressure. The Chaplygin gas as a candidate
behind the current observation of cosmic acceleration has been thoroughly
investigated in recent years. The generalized Chaplygin gas with negative
pressure is described by an exotic equation of state

P = − A
ρα

, (8)

where P is the pressure, A is a positive constant, and 0 ≤ α ≤ 1 is the
equation-of-state parameter such that α = 1 denotes the standard Chaply-
gin gas [25, 26]. In this sense, since the string theory deals with the high-
energy phenomena such as very early universe, considering the Chaplygin
gas quantum cosmology may have physical grounds. It is shown [27] that
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the generalized Chaplygin gas (8) can play the role of a mixture of cosmo-
logical constant and radiation by means of which the cosmological dynamics
shows a transition from a dust dominated era to a de Sitter phase and thus
it interpolates between dust matter and the cosmological constant. Cosmol-
ogy with the generalized Chaplygin gas (8) results in an expanding universe
which begins from a non-relativistic matter dominated phase and ends at
a cosmological constant dominated era [26]. Also, the idea of this fluid is
used to find a solution to the coincidence problem in cosmology [28–34].
Quantum cosmological models with the Chaplygin gas have been studied in
Refs. [35–37], especially in Ref. [38], a scalar field is also added to the Chap-
lygin gas quantum cosmology and its effects are investigated. In summary,
since the Chaplygin gas models are able to describe the smooth transition
from a decelerated expansion to an accelerated universe and also since they
try to give a unified picture of dark matter and dark energy, one may use
them as an alternative to the traditional ΛCDM models.

In this paper, we shall consider a cosmological model in the framework of
a projectable HL gravity without detailed balance condition. A Chaplygin
gas will play the role of the matter source and a scalar field is coupled to
metric with a generic coupling function F (φ). The classical version of such
models is used to answer the missing-matter problem in cosmology [39], and
their quantum cosmology is studied in Refs. [38, 40, 41]. Since our aim in the
quantum part of the model is to investigate the time evolution of the wave
function, we prefer to use the Chaplygin gas in the framework of the Schutz
formalism [42, 43]. In such a setup, the Hamiltonian of the gas consists of
a linear momentum, the variable canonically conjugate to which may play
the role of a time parameter (see Refs. [21, 36, 37, 40, 44, 45] for details of
this formalism).

The paper in organized as follows: In Sec. 2, we construct the action of
HL gravity with the Chaplygin gas and scalar field in terms of minisuper-
space variables. In Secs. 3 and 4, we approximate the super-Hamiltonian in
two cases Spα+1

ε � Aa3(α+1) and Spα+1
ε � Aa3(α+1) separately. The Schutz

formalism for the Chaplygin gas allows us to get a Schrödinger–Wheeler–
DeWitt (SWD) equation in which the only remaining matter degree of free-
dom plays the role of time. After choosing the coupling function between
the scalar field and metric as F (φ) = λφm, we obtain the classical dynamics
of the scale factor and scalar field in terms of the Schutz time parameter
and see that they exhibit some types of singularities. We then deal with
the quantization of the model and, by computing the expectation values of
the scale factor and scalar field, we show that the evolution of the universe
based on the quantum picture is free of classical singularities. Section 5 is
devoted to summary and conclusions.
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2. The model

The total action (without the detailed balance condition) of our model
consists of three parts, that are gravitational Hořava–Lifshitz gravity action,
scalar field and Chaplygin gas actions parts as

S = SHL + Sφ + SP , (9)

where SHL, Sφ and SP are the Hořava–Lifshitz, scalar field and Chaplygin
gas actions, respectively. Now, we expand them separately.

2.1. Hořava–Lifshitz action

The action for the projectable HL gravity without detailed balance is
given in (7). In a quasi-spherical polar coordinate system, we assume that
the geometry of space-time is described by the FRW metric

ds2 = gµνdxµdxν

= −N2(t)dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dϑ2 + sin2 ϑdϕ

)]
, (10)

in which N(t) is the lapse function, a(t) is the scale factor and k = −1, 0,+1
denotes the open, flat, and closed universes, respectively. Now, in the lan-
guage of the ADM variables, the above metric can be rewritten as

ds2 = −N2(t)dt2 + γijdx
idxj ,

where

γij = a2(t)diag

(
1

1− kr2
, r2, r2 sin2 ϑ

)
(11)

is the induced intrinsic metric on the 3-dimensional spatial hypersurfaces
from which we obtain the Ricci and extrinsic curvature tensors as

Rij =
2k

a2
γij , Kij =

ȧ

Na
γij . (12)

The gravitational part for the model may now be written by substituting
the above results into action (7) giving

SHL =
3(3λ− 1)M2

PlV0
2

∫
dt Na3

[
− ȧ2

N2a2
+

6k

3(3λ− 1)

1

a2

− 2Λ

3(3λ− 1)
− 12k2

a4
3g2 + g3

3(3λ− 1)M2
Pl

− 24k3

a6
9g4 + 3g5 + g6
3(3λ− 1)M4

Pl

]
=

∫
dt N

(
−aȧ

2

N2
+ gca− gΛa3 −

gr
a
− gs
a3

)
, (13)
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where V0 =
∫

d3x r2 sinϑ√
1−kr2 is the integral over spatial dimensions. Also, we

have defined the coefficients gc, gΛ, gr and gs as



gc = 6k
3(3λ−1) ,

gΛ = 2Λ
3(3λ−1) ,

gr = 12k2(3g2+g3)
3(3λ−1)M2

Pl
,

gs = 24k3(9g4+3g5+g6)
3(3λ−1)M4

Pl
,

(14)

in which we have set 3V0M
2
Pl(3λ− 1)/2 = 1. Now, the gravitational part of

the Hamiltonian for this model can be obtained from its standard procedure.
Noting that

pa = −2aȧ

N
, (15)

we get

HHL = pa ȧ− LHL ,

= N

(
−p

2
a

4a
− gca+ gΛa

3 +
gr
a

+
gs
a3

)
. (16)

2.2. The Chaplygin gas

In the Schutz formalism, the four velocity of a fluid can be expressed in
terms of six scalar potentials as [42, 43]

uν =
1

µ
(∂νε+$∂νβ + θ∂νS) , (17)

where µ and S are specific enthalpy and entropy, respectively, while the
potentials$ and β are related to torsion and are absent in FRWmodels. The
potentials ε and θ have no direct physical interpretation in this formalism.
The four-velocity obeys the condition uνuν = 1. Hence, the four-velocity of
the fluid in its rest frame reads

uν = Nδ0ν ⇒ µ =
ε̇+ θṠ

N
. (18)

Following the thermodynamical description of [36, 44], the basic thermody-
namic relations of the Chaplygin gas are given by

ρ = ρ0(1 +Π), µ = 1 +Π +
P

ρ0
, (19)
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where ρ0 and Π are the rest mass density and the specific internal energy of
the gas, respectively. These quantities together with the temperature τ of the
system obey the first law of the thermodynamics, which can be rewritten as

τdS = dΠ + Pd

(
1

ρ0

)
=

1

(1 + α)(1 +Π)α
d

[
(1 +Π)1+α − A

ρ1+α0

]
, (20)

where we have used the equation of state (8). Therefore, the temperature
and entropy of the gas are obtained as

τ =
1

(1 + α)(1 +Π)α
, S = (1 +Π)1+α − A

ρ1+α0

. (21)

Now, we can express the energy density and pressure as functions of µ and S

ρ =

[
1

A

(
1− µ

α+1
α

S
1
α

)] −1
α+1

, (22)

P = −A

[
1

A

(
1− µ

α+1
α

S
1
α

)] α
α+1

. (23)

Finally, with the help of these relations, the action of the Chaplygin gas
takes the form of

SP =

∫
dt d3xN

√
γ P

= −A
∫

dtNa3

[
1

A

(
1− (ε̇+ θṠ)

α+1
α

N
α+1
α S

1
α

)] α
α+1

. (24)

Now, in terms of the conjugate momenta

pa = pθ = 0 ,

pε = a3
(
ε̇+θṠ
NS

) 1
α

[
1
A

(
1− (ε̇+θṠ)

α+1
α

N
α+1
α S

1
α

)] −1
α+1

,

pS = θpε ,

(25)

the Chaplygin gas Hamiltonian can be written as follows:
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HP =
(
ε̇+ θṠ

)
pε − LP

= Na3

 1

A

1−

(
ε̇+ θṠ

)α+1
α

N
α+1
α S

1
α



−1
α+1

= N
(
Spα+1

ε +Aa3(α+1)
) 1
α+1

. (26)

2.3. The scalar field

As mentioned before, we consider a non-linear self-coupling scalar field
minimally coupled to geometry by the coupling function F (φ) [40]. The
action of such a scalar field is

Sφ = −
M2

Pl

2

∫
d4x
√
−g F (φ)gµν∂µφ∂νφ , (27)

where by substituting metric (10), one gets

Sφ =

∫
dt

1

N
F (φ)a3φ̇2 . (28)

Noting that the momentum congugate to φ is

pφ =
2

N
F (φ)a3φ̇ , (29)

the Hamiltonian of the scale field is obtained as

Hφ =
N p2φ

4F (φ)a3
. (30)

Now, we are ready to write the total Hamiltonian for our model as

H = HHL +HP +Hφ

= N

[
− p2a

4a
− gca+ gΛa

3 +
gr
a

+
gs
a3

+
p2φ

4F (φ)a3

+
(
Spα+1

ε +Aa3(α+1)
) 1
α+1

]
. (31)

The setup for constructing the phase space and writing the Lagrangian and
Hamiltonian of the model is now complete. However, the resulting classical
(and quantum) equations of motion do not seem to have analytical solutions.
To extract exact solutions, we first apply some approximation to the above
Hamiltonian [36], and then will deal with the behavior of its classical and
quantum pictures.
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3. The Spα+1
ε � Aa3(α+1) limit

In the early times of cosmic evolution when the scale factor is small, we
can use the following expansion [46, 47]:

(
Spα+1

ε +Aa3(α+1)
) 1
α+1

= S
1

α+1 pε

(
1 +

Aa3(α+1)

Spα+1
ε

) 1
α+1

= S
1

α+1 pε

(
1 +

1

α+ 1

Aa3(α+1)

Spα+1
ε

+ . . .

)
' S

1
α+1 pε . (32)

Therefore, the super-Hamiltonian takes the form of

H = N

(
−p

2
a

4a
− gca+ gΛa

3 +
gr
a

+
gs
a3

+
p2φ

4F (φ)a3
+ S

1
α+1 pε

)
. (33)

Now, consider the following canonical transformation [36, 48]

T = −(α+ 1)S
α
α+1 p−1ε pS ,

pT = S
1

α+1 pε , (34)

under the act of which Hamiltonian (33) takes the form of

H = N

(
−p

2
a

4a
− gca+ gΛa

3 +
gr
a

+
gs
a3

+
p2φ

4F (φ)a3
+ pT

)
. (35)

We see that the momentum pT is the only remaining canonical variable
associated with the Chaplygin gas and appears linearly in the Hamiltonian.

3.1. The classical model

The classical dynamics of the system is governed by the Hamiltonian
equation of motion q̇ = {q,H} for each variable. The result is

ȧ = Npa
2a ,

ṗa = N

(
− p2a

4a2
+ gc − 3gΛa

2 + gr
a2

+ 3gs
a3

+
3p2φ
4Fa4

)
,

φ̇ =
Npφ
2Fa3

,

ṗφ =
Np2φ
4a3

F ′

F 2 ,

Ṫ = N ,
ṗT = 0→ pT = const ,

(36)
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where F ′ = dF (φ)
dφ . Up to this point, the cosmological model, in view of

the concerning issue of time, has been, of course, under-determined. Before
trying to solve these equations, we must decide on a choice of time in the the-
ory. The under-determinacy problem at the classical level may be resolved
by using the gauge freedom via fixing the gauge. A glance at the above
equations shows that choosing the gauge N = 1, we have Ṫ = 1 ⇒ T = t,
which means that variable T may play the role of time in the model. With
this time gauge, we obtain the following equation of motion for φ:

2
φ̈

φ̇
+
F ′

F
φ̇+ 6

ȧ

a
= 0 . (37)

This equation can easily be integrated to yield

F (φ)φ̇2 = Ca−6 , (38)

where C is an integration constant. Also, eliminating the momenta from
system (36) results in

ȧ2 + gc − gΛa2 −
gr
a2
− gs + C

a4
− pT

a
= 0 , (39)

in which we have used Eq. (38). In general, this equation does not seem to
have an exact solution, so we restrict ourselves to the special case in which
gc = gΛ = gr = 0, gs 6= 0, for which the solution to Eq. (39) reads

a(t) =

(
9pT
4
t2 − gs + C

pT

) 1
3

. (40)

What remains to be found is an expression for the scalar field φ(t). In the
following, we shall consider the case of a coupling function in the form of
F (φ) = λφm. With this choice for the function F (φ) and with the help of
Eqs. (38) and (40), we are able to calculate the time evolution of the scalar
field as

φ(t) =

[
φ0 −

m+ 2

6

√
C

(gs + C)λ
ln

3pTt− 2
√
gs + C

3pTt+ 2
√
gs + C

] 2
m+2

, (41)

where φ0 is an integration constant and we assumed m 6= −2. Finally, to
understand the relation between the Big-Bang singularity a → 0 and the
blow up singularity φ → ±∞, we are going to find a classical trajectory in
configuration space (a, φ), where the time parameter t is eliminated. From
(38) and (39), one gets

φm
(

dφ

da

)2

=
Ca−6

λ

(
−gc + gΛa

2 +
gr
a2

+
gs + C

a4
+
pT
a

)−1
, (42)
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where for the case of gc = gΛ = gr = 0, gs 6= 0, after integration, it reads

φ(a) =

[
φ0 −

m+ 2

6

√
C

(gs + C)λ
ln

√
pTa3 + gs + C −

√
gs + C√

pTa3 + gs + C +
√
gs + C

] 2
m+2

.

(43)

We see that the evolution of the universe based on (40) has Big-Bang-like
singularities at t = ±t∗, where t∗ = 2

3PT

√
gs + C. Indeed, the condition

a(t) ≥ 0 separates two sets of solutions each of which is valid for t ≤ −t∗ and
t ≥ +t∗, respectively. For the former, we have a contracting universe which
decreases its size according to a power law relation and ends its evolution in
a singularity at t = −t∗, while for the latter, the evolution of the universe
begins with a Big-Bang singularity at t = +t∗ and then follows the power
law expansion a(t) ∼ t2/3 at late time of cosmic evolution. On the other
hand, the scalar field has a monotonically decreasing behavior coming from
φ→ +∞ at early times and reaches zero as time grows, see Fig. 1. We shall
see in the next subsection how this classical picture may be modified if one
takes into account the quantum mechanical considerations.

Fig. 1. (Color online) Left: The classical scale factor a(t) (darker/blue line) and
φ(t) (lighter/red line). Right: The classical trajectory in a–φ plane. The figures
are plotted for the numerical values gs = 1

20 , pT = 4
9σ2 , C = 3, λ = 1 and m = 2.

3.2. The quantum model

We now focus our attention on the study of the quantum cosmology of
the model described above. We start by writing the Wheeler–DeWitt equa-
tion from Hamiltonian (35). Since the lapse function appears as a Lagrange
multiplier in the Hamiltonian, we have the Hamiltonian constraint H = 0.
Thus, application of the Dirac quantization procedure demands that the



838 H. Ardehali, P. Pedram, B. Vakili

quantum states of the universe should be annihilated by the operator ver-
sion of H, that is HΨ(a, φ, T ) = 0, where Ψ(a, φ, T ) is the wave function of
the universe. If we use the usual representation Pq → −i∂q, we are led to
the following SWD equation:

1

4a

(
∂2

∂a2
+
β

a

∂

∂a

)
Ψ(a, φ, T ) +

(
−gca+ gΛa

3 +
gr
a

+
gs
a3

)
Ψ(a, φ, T )

− 1

4Fa3

(
∂2

∂φ2
+
κF ′

F

∂

∂φ

)
Ψ(a, φ, T ) = i

∂Ψ(a, φ, T )

∂ T
, (44)

where the parameters β and κ represent the ambiguity in the ordering of
factors (a, Pa) and (φ, Pφ) respectively. This equation takes the form of a
Schrödinger equation i∂Ψ/∂T = HΨ , in which the Hamiltonian operator is
Hermitian with the standard inner product

〈Ψ1 | Ψ2〉 =

∫
(a,φ)

dadφa Ψ∗1Ψ2 . (45)

We separate the variables in the above equation as Ψ(a, φ, T ) = eiETψ(a, φ)
leading to

1

4a

(
∂2

∂a2
+
β

a

∂

∂a

)
ψ(a, φ)− 1

4Fa3

(
∂2

∂φ2
+
κF ′

F

∂

∂φ

)
ψ(a, φ)

+
(
−gca+ gΛa

3 +
gr
a

+
gs
a3

+ E
)
ψ(a, φ) = 0 , (46)

where E is a separation constant. The solutions of the above differential
equation are separable and may be written in the form of ψ(a, φ) = A(a)Φ(φ)
which yields

d2A(a)

da2
+
β

a

dA(a)

da
+ 4

(
−gca2 + gΛa

4 + gr +
gs + w

a2
+ Ea

)
A(a) = 0 ,

(47)
d2Φ(φ)

dφ2
+
κF ′(φ)

F (φ)

dΦ(φ)

dφ
+ 4wF (φ)Φ(φ) = 0 , (48)

where w is another constant of separation. The factor-ordering parameters
do not affect the semiclassical probabilities [49] so in what follows, we have
chosen β = 0 and κ = −1 to make the differential equations solvable. Upon
substituting the relation F (φ) = λφm into (48), its solutions read in terms
of the Bessel functions J and Y as

Φ(φ) = C1 φ
1+m

2 Jm+1
m+2

(
4
√
λw

m+ 2
φ
m+2

2

)
+ C2 φ

1+m
2 Ym+1

m+2

(
4
√
λw

m+ 2
φ
m+2

2

)
(49)



Classical and Quantum Chaplygin Gas Hořava–Lifshitz Scalar-metric . . . 839

for m 6= −2, and

Φ(φ) = C1 φ
−1+

√
1−16λw
2 + C2 φ

−1−
√
1−16λw
2 (50)

for m = −2. Also, if we set (as in the classical solutions) gc = gΛ = gr = 0,
Eq. (47) admits the solution

A(a) = c1
√
a Jν

(
4
3

√
Ea

3
2

)
+ c2
√
a Yν

(
4
3

√
Ea

3
2

)
, (51)

where ν = 1
3

√
1− 16(gs + w). Thus, the eigenfunctions of the SWD equa-

tion can be written as

ΨE,w(a, φ, T ) = eiETA(a)Φ(φ)

= eiET
√
a Jν

(
4

3

√
Ea

3
2

)
φ
m+1

2 Jm+1
m+2

(
4
√
λw

m+ 2
φ
m+2

2

)
,

(52)

where we have chosen C2 = c2 = 0 for having well-defined functions in all
ranges of variables a and φ. We may now write the general solutions to the
SWD equations as a superposition of the eigenfunctions, that is

Ψ(a, φ, T ) =

∫
dE dw f(E) g(w)ΨE,w(a, φ, T )

=
√
aφ

m+1
2

w0∫
0

dw g(w) Jm+1
m+2

(
4
√
λw

m+ 2
φ
m+2

2

)

×
∞∫
0

dE f(E) eiET Jν

(
4

3

√
Ea

3
2

)
, (53)

where w0 = 1
16 − gs and f(E) and g(w) are weight functions suitable to

construct the wave packets. By using the equality [50]

∞∫
0

dx e−Zx
2
xν+1 Jν(bx) =

bν

(2Z)ν+1
e−

b2

4Z , (54)

we can evaluate the integral over E in (53) and a simple analytical expression
for this integral is found if we choose the function A(E) to be

f(E) = E
ν
2 e−σE , (55)
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where σ is an arbitrary positive constant. With this procedure, we get

Ψ(a, φ, T ) =
√
aφ

m+1
2

w0∫
0

dw g(w) Jm+1
m+2

(
4
√
λw

m+ 2
φ
m+2

2

)

×

(
4
3a

3
2

) 1
3

√
1−16(gs+w)

(2Z)1+
1
3

√
1−16(gs+w)

e
−4a3

9Z , (56)

where Z = σ − iT . To achieve an analytical closed expression for the wave
function, we assume that the above superposition is taken over such values
of w for which one can use the approximation

√
1− 16(gs + w) '

√
1− 16gs,

that is

Ψ(a, φ, T ) =
√
aφ

m+1
2

(
4
3a

3
2

) 1
3

√
1−16gs

(2Z)1+
1
3

√
1−16gs

e
−4a3

9Z

×
w0∫
0

dw g(w) Jm+1
m+2

(
4
√
λw

m+ 2
φ
m+2

2

)
. (57)

Now, by using the equality [50]

1∫
0

dν νr+1(1− ν2)s/2Jr(zν) =
2s Γ (s+ 1)

zs+1
Jr+s+1(z) (58)

and choosing the weight function g(w) =
(
w
w0

) m+1
2(m+2)

(
1− w

w0

)s/2
, we are

led to the following expression for the wave function:

Ψ(a, φ, T ) = N a
1+
√

1−16gs
2

(σ − iT )1+
1
3

√
1−16gs

exp

(
− 4a3

9(σ − iT )

)

×φ−
1+(m+2)s

2 J 2m+3
m+2

+s

(√
(1− 16gs)λ

m+ 2
φ
m+2

2

)
, (59)

where N is a normalization coefficient. Now, having the above expression for
the wave function of the universe, we are going to obtain the predictions for
the behavior of the dynamical variables in the corresponding cosmological
model. In general, one of the most important features in quantum cosmol-
ogy is the recovery of classical cosmology from the corresponding quantum
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model or, in other words, how can the WD wave functions predict a classical
universe. In this approach, one usually constructs a coherent wave packet
with a good asymptotic behavior in the minisuperspace, peaking in the vicin-
ity of the classical trajectory. On the other hand, in another approach to
show the correlations between classical and quantum pattern, following the
many-worlds interpretation of quantum mechanics, one may calculate the
time dependence of the expectation value of a dynamical variable q as

〈q〉(t) =
〈Ψ |q|Ψ〉
〈Ψ |Ψ〉

. (60)

Following this approach, we may write the expectation value for the scale
factor as

〈a〉(T ) =

∫∞
a=0

∫ +∞
φ=−∞ dadφa2 |Ψ |2∫∞

a=0

∫ +∞
φ=−∞ da dφa |Ψ |2

=
3

2

Γ
(
4+
√
1−16gs
3

)
Γ
(
3+
√
1−16gs
3

) (σ2 + T 2

3σ

) 1
3

. (61)

It is important to classify the nature of the quantum model as concerns
the presence or absence of singularities. For the wave function (59), the
expectation value (61) of a never vanishes, showing that these states are
non-singular. Indeed, expression (61) represents a bouncing universe with
no singularity where its late time behavior coincides to the late time behav-
ior of the classical solution (40), that is a(t) ∼ t

2
3 . We have plotted this

behavior in Fig. 2. As this figure shows, instead of two separate contracting
and expanding classical solutions, the quantum expectation value consists of
two branches. In one branch, the universe contracts and when reaches a min-
imum size undergoes to an expansion period. Therefore, we have bouncing
cosmology in which the bounce occurs at classical singularity. In a similar
manner, the expectation value for the scalar field reads as

〈φ〉(T ) =

∫
da dφaφ |Ψ |2∫
da dφa |Ψ |2

= const . (62)

We see that the expectation value of φ does not depend on time. This result
is comparable with those obtained in [51] where a constant expectation value
for the dilatonic field in a quantum cosmological model based on the string
effective action coupled to matter has been obtained.
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Fig. 2. (Color online) The dynamical behavior of 〈a〉(T ) (lighter/green line) in com-
parison with classical scale factor a(t) (darker/blue line). See Eqs. (61) and (40).

4. The Spα+1
ε � Aa3(α+1) limit

Now, let us return to Hamiltonian (31) but this time expand it in the
late time limit Spα+1

ε � Aa3(α+1) as(
Spα+1

ε +Aa3(α+1)
) 1
α+1

= A
1

α+1a3
(

1 +
Spα+1

ε

Aa3(α+1)

) 1
α+1

= A
1

α+1a3
[
1 +

1

α+ 1

Spα+1
ε

Aa3(α+1)

+
1

2

1

α+ 1

(
1

α+ 1
− 1

)(
Spα+1

ε

Aa3(α+1)

)2

+ . . .

]
' A

1
α+1a3 +

1

α+ 1

A
−α
α+1Spα+1

ε

a3α
. (63)

Therefore, the super-Hamiltonian takes the form of

H=N

(
−p

2
a

4a
− gca+ ḡΛa

3+
gr
a

+
gs
a3

+
p2φ

4F (φ)a3
+

1

α+ 1

A
−α
α+1Spα+1

ε

a3α

)
,

(64)

where ḡΛ = gΛ + A
1

α+1 . Now, consider the following canonical transforma-
tion [48]:

T = −(α+ 1)A
α
α+1 p−(α+1)

ε pS ,

pT =
1

α+ 1
A
−α
α+1Spα+1

ε , (65)
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under act of which the above Hamiltonian becomes

H = N

(
−p

2
a

4a
− gca+ ḡΛa

3 +
gr
a

+
gs
a3

+
p2φ

4F (φ)a3
+
pT
a3α

)
. (66)

We now may repeat the steps as we have taken in the previous section to
obtain the classical and quantum cosmological dynamics based on Hamilto-
nian (66).

4.1. The classical model

The classical equations of motion from Hamiltonian (66) are

ȧ = −Npa
2a ,

ṗa = N

(
− p2a

4a2
+ gc − 3ḡΛa

2 + gr
a2

+ 3gs
a4

+
3p2φ
4Fa4

+ 3αpT
a3α+1

)
,

φ̇ =
Npφ
2Fa3

,

ṗφ =
Np2φ
4a3

F ′

F 2 ,

Ṫ = N
a3α

,
ṗT = 0→ pT = const .

(67)

To have the clock parameter as T = t, we should choose the lapse function
N = a3α. Since the third and fourth equations of this system are the same
as their counterparts in system (36), the dynamical equations for the scalar
field are the same as Eqs. (37) and (38). Also, with the constraint equation
H = 0, we obtain

ȧ2 + a6α
(
gc − ḡΛa2 −

gr
a2
− gs + C

a4
− pT
a3α+1

)
= 0 . (68)

To solve this equation, we suppose gc = ḡΛ = 0 and gr, gs 6= 0 which
simplifies the above equation to

ȧ2 = a6α
(
gr
a2

+
gs + C

a4
+

pT
a3α+1

)
. (69)

This equation does not yet have an exact solution for the general case with
arbitrary α. So, from now on, we restrict ourselves to the case of α = 1

3 for
which the solution to Eq. (69) is

a(t) =

√
(gr + pT)t2 − gs + C

gr + pT
. (70)
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By means of this relation, with the help of (37) and (38), and with the same
detail as in previous section, we get the following expressions for φ(t) and
φ(a):

φ(t) =

[
φ0 −

m+ 2

4

√
C

(gs + C)λ
ln

(gr + pT)t−
√
gs + C

(gr + pT)t+
√
gs + C

] 2
m+2

, (71)

and

φ(a) =

[
φ0+

m+ 2

2

√
C

(gs+C)λ
ln

√
gs+C+

√
(gr+pT)a2+gs+C

a

] 2
m+2

.

(72)

4.2. The quantum model

The standard quantization process based on Hamiltonian (66) get us the
following SWD equation:

1

4a

(
∂2

∂a2
+
β

a

∂

∂a

)
Ψ(a, φ, T ) +

(
−gca+ ḡΛa

3 +
gr
a

+
gs
a3

)
Ψ(a, φ, T )

− 1

4Fa3

(
∂2

∂φ2
+
κF ′

F

∂

∂φ

)
Ψ(a, φ, T ) =

i

a3α
∂Ψ(a, φ, T )

∂ T
, (73)

where β and κ are again factor ordering parameters which are, as before,
set as β = 0 and κ = −1. This time the Hamiltonian operator is Hermitian
with the inner product

〈Ψ1, Ψ2〉 =

∫
(a,φ)

dadφa1−3α Ψ∗1Ψ2 . (74)

Separation of variables as Ψ(a, φ, T ) = eiETA(a)Φ(φ) leads to Eq. (48) with
a solution (49) for the φ-sector of the eigenfunctions, while for A(a), we
arrive at the following equation (with gc = ḡΛ = 0):

d2A

da2
+ 4

(
gr +

gs + w

a2
+

E

a3α−1

)
A = 0 . (75)

For α = 1
3 , this equation has the solutions

A(a) = c1
√
a Jν

(
2
√
gr + Ea

)
+ c2
√
a Yν

(
2
√
gr + Ea

)
, (76)
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with ν = 1
2

√
1− 16(gs + w). Therefore, the eigenfunctions of the corre-

sponding SWD equation read

ΨE,w(a, φ, T ) = eiET
√
a Jν

(
2
√
gr + Ea

)
φ
m+1

2 Jm+1
m+2

(
4
√
λw

m+ 2
φ
m+2

2

)
,

(77)

in which we have removed the Bessel functions Y from the solutions. Fol-
lowing the same steps which led us to the wave function (59), we obtain the
wave function as

Ψ(a, φ, T ) = N e−igrT
a

1+
√
1−16gs
2

(σ − iT )1+
1
2

√
1−16gs

exp

(
−a2

σ − iT

)

×φ−
1+(m+2)s

2 J 2m+3
m+2

+s

(√
(1− 16gs)λ

m+ 2
φ
m+2

2

)
, (78)

from which the expectation values are obtained as

〈a〉(T ) =

∫
dadφa |Ψ |2∫
dadφ |Ψ |2

=
Γ
(
3+
√
1−16gs
2

)
Γ
(
2+
√
1−16gs
2

) (σ2 + T 2

2σ

) 1
2

, (79)

〈φ〉(T ) =

∫
dadφφ |Ψ |2∫
dadφ |Ψ |2

= const . (80)

Fig. 3. (Color online) Qualitative behavior of a(t) (darker/blue line) and 〈a〉(t)
(lighter/green line), see Eqs. (70) and (79).
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In Fig. 3, we have plotted the classical scale factor (70) and its quantum
expectation value (79). The discussions on the comparison between quan-
tum cosmological solutions and their corresponding form from the classical
formalism are the same as in the previous section. Similar discussion as
above would be applicable to this case as well.

5. Conclusion

In this paper, we have applied the Hořava theory of gravity to a FRW
cosmological model coupled minimally to a scalar field in which a general-
ized Chaplygin gas, in the context of the Schutz representation, plays the
role of the matter field. The use of the Schutz formalism for the Chaplygin
gas allowed us to introduce the only remaining matter degree of freedom as
a time parameter in the model. After a very brief review of HL theory of
gravity, we have considered a FRW cosmological setting in the framework of
the projectable HL gravity without detailed balance condition and presented
its Hamiltonian in terms of the minisuperspace variables. Though the corre-
sponding classical equations did not have exact solutions, we analyzed their
behavior in the limiting cases of the early and late times of cosmic evolution
and obtained analytical expressions for the scale factor and the scalar field
in these regions. We have seen that these solutions are consisted of two
separate branches each of which exhibits some kinds of classical singular-
ities. Indeed, the classical solutions have either contracting or expanding
branches which are disconnected from each other by some classically forbid-
den regions. Another part of the paper is devoted to the quantization of the
model described above in which we saw that the classical singular behavior
will be modified. In the quantum models, we showed that the SWD equa-
tion can be separated and its eigenfunctions can be obtained in terms of
analytical functions. By an appropriate superposition of the eigenfunctions,
we constructed the corresponding wave packets. Using Schutz’s representa-
tion for the Chaplygin gas, under a particular gauge choice, we led to the
identification of a time parameter which allowed us to study the time evolu-
tion of the resulting wave function. Investigation of the expectation value of
the scale factor shows a bouncing behavior near the classical singularity. In
addition to singularity avoidance, the appearance of bounce in the quantum
model is also interesting in its nature due to prediction of a minimal size for
the corresponding universe. It is well-known that the idea of existence of a
minimal length in nature is supported by almost all candidates of quantum
gravity.

The research of P. Pedram is supported by the Iran National Science
Foundation (INSF), grant No. 93047987.
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