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An useful approach is investigated in order to analyze a class of a
stochastic differential equations that can be encountered in quantum op-
tics problems, especially, in the case of two-photon losses on the driven
cavity mode. The passage to the ordinary coupled differential equations is
presented and the treatment of the obtained coupled system is explored.
Generalization of the problem to stimulate variable coefficients is discussed
and the exact solutions are achieved in explicit forms under suitable con-
ditions on the coefficients.
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1. Introduction

As it is well-known in quantum optics problems, there are quantum fluc-
tuations associated with the states corresponding to classically well-defined
electromagnetic fields. The general explanation of fluctuation phenomena
needs the density operator. Nevertheless, it is possible to give an other
option but equivalent description in terms of distribution functions [1–3].
The extended treatment of quantum statistical phenomena by developing
the theory of quasi classical distributions is a very interesting field of inves-
tigation [1] for several motivations. In the beginning, the expansion of the
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quantum theory of radiation to involve nonquantum stochastic effects such
as thermal fluctuations is required. This is an important factor in the theory
of partial coherence. In addition, the edge between classical and quantum
physics is explained by the use of such a distribution. The arch type example
is the Wigner distribution [4].

Additionally, the investigation of the border between quantum and classi-
cal physics is an attractive issue. Nowhere is this better demonstrated than
in quantum optics, where we are regularly encountered with the problem
of describing fields which are nearly classical but have significant quantum
characters. The coherent states are well-appropriated to such studies [1–3].

On the other hand, in many quantum optics problems, it is appropriate to
illustrate the state of the field in terms of coherent states rather than with
photon number states. This presents some revelations and complications
[1–3], the coherent states are not orthogonal and are overcomplete. More-
over, as we shall notice, this overcompleteness permits us to get a helpful
diagonal expansion of the density operator in terms of complex matrix ele-
ments P (α). This representation can be understood as a quasi-probability
distribution function, whose dynamics can under suitable conditions be de-
scribed in the form of a Fokker–Planck equation (FPE) [5–10].

From a physical viewpoint, the Fokker–Planck equation describes the
time evolution of the probability density function of the velocity of a particle
under the influence of drag forces and random forces, as in Brownian motion.
The equation can be generalized to other observables as well; i.e., the discrete
nonlinear dynamic systems subjected to white random excitation [11], the
autocorrelation function in semiconductor micro-cavities [12, 13], gain-swept
superradiance (GSS) in an ensemble of two-level atoms [14], and in cooling
and entanglement in cavity optomechanics [15], etc.

Now, in quantum optics, most problems are governed by the master
equation, which is an operator-type equation that is not easy to solve. Then,
we have recourse to use some techniques in order to solve these problems.
One of them is the use of the probability distribution that can be achieved
from density operator. The reason of the representation of the master equa-
tion was to attain c-number differential equations that are equivalent to
the operator equations, but are more willingly solvable. In particular, the
P -representation is used to estimate the normally ordered correlation func-
tions of the field operators. Furthermore, the P -representation forms a cor-
respondence between the quantum and the classical coherent theory [18, 19].
The P -representation is used to transform the master equations into
a c-number differential equations called the Fokker–Planck equations [3],
which can be viewed as a stochastic equations. These equations can be solved
analytically by direct integration for a specific initial conditions [18, 19].
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On the other hand, we will explore the technique to solve the Fokker–
Planck equation when direct solutions are not possible. This technique in-
volves stochastic differential equations approach and will be illustrated with
an interesting problem in quantum optics, which is concerned with the effect
of two-photon losses on the driven cavity mode. We limit our formalism to
the case of white noise, i.e., to discrete signal whose samples are regarded
as a sequence of serially uncorrelated random variables with zero mean and
finite variance. Thus, the obtained system consists of nonlinear coupled dif-
ferential equations which, in general, cannot always be analytically solved.
We present some treatments of the obtained equations under some suitable
conditions. It may, however, be worthwhile if the physical models can be
constructed in such manner that the coupled nonlinear system can either be
solved analytically or transformed into another system in which the equa-
tions are ordinary and can be decoupled, then solved separately.

In this work, we will examine a useful approach to solve these obtained
coupled nonlinear systems and then discuss the possibility to enlarge this
approach for the case of variable coefficients.

2. Itô’s stochastic differential equation

In the case of initial coherent state [20–25], it has been pointed out that
the multidimensional Fokker–Planck equation can be analytically solved in
some special cases [18, 19]. In general, the Fokker–Planck equations are
not linear and do not admit direct solutions, thus, we have recourse to
employ other sophistical techniques. One of these techniques is the use
of the stochastic differential equations (SDE) approach. This procedure is
based on the fact that for a Fokker–Planck equation with positive diffusion
matrix, a set of equivalent stochastic differential equations can exists. The
positively-defined diffusion matrix Dij(x(t), t) can always be factorized into
the form of

Dij(x(t), t) =
∑
k

gik(x(t), t)g
†
kj(x(t), t) . (2.1)

In general, the Itô stochastic differential equation (SDE) [26] can be formu-
lated as

dxi = hi(x(t), t)dt+
∑
j

gij(x(t), t)ξj(t)dt , (2.2)

where x = {xi, 1 ≤ i ≤ n} is the set of unknowns, the hi and gij are arbitrary
functions and ξi(t) are real independent Gaussian white noise terms with
zero mean value ξi(t) = 0 and delta-δ correlated in time

ξi(t)ξj (t′) = δijδ
(
t− t′

)
, (2.3)
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consequently to the Itô’s lemma [26], the set of stochastic differential equa-
tions, which is associated to the general form of the Fokker–Planck equation
[28, 29], can be read as

dy =
∑
i

∂y

∂xi

hidt+∑
j

gijξj(t)dt

+
1

2

∑
k,l,m

∂2y

∂xk∂xl
gkmglmdt+

∂y

∂t
dt ,

(2.4)
where y = y(xk, t) is a smooth function of the unknown variables xk.

On the other hand, the stochastic differential equations can be treated
by numerical simulation techniques or by analytic methods when they are
linear [28, 29]. When they are nonlinear equations, the situation becomes
more complicated and needs to seek new approaches. In the following, we
will limit our considerations to an interesting problem that can be encoun-
tered when we deal with the effect of two-photon losses on the driven cavity
mode in quantum optics.

2.1. Two-photon losses effect on the driven cavity mode

Assume that the cavity mode, considered in the previous example, is in
addition damped by two-photon losses [28, 29], e.g., due to a two-photon
absorption. Then, its corresponding interaction Hamiltonian can be read in
the interaction picture as

H3 = ~
∑
k

(
Gkb

†
ka

2 +G∗k

(
a†
)2
bk

)
. (2.5)

Assume the heat bath is at zero temperature, the master equation of the
system can be then written as [20–25]

∂

∂t
ρ =

[
−iδa†a+ Ea† − E∗a, ρ

]
− 1

2
κ
([
a†2, a2ρ

]
+
[
ρa†2, a2

])
−γ
2

([
a†, aρ(t)

]
+
[
ρ(t)a†, a

])
, (2.6)

where κ is the photon–photon interaction term (the two-photon loss coeffi-
cient). The obtained density matrix can be converted to the Fokker–Planck
equation using the previous treatment. However, the diffusion matrix of
FPE is not always positively defined. Furthermore, as the stochastic pro-
cesses are independent, the corresponding stochastic differential equations
for α and α∗ are not complex conjugate. To remedy this problem, we will
use the positive P -representation. In this situation, the stochastic differen-
tial equations can be obtained only by using the positive P -representation;
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the usual P -representation does not work [3]. The positive P -representation
is defined as follows:

ρ =

∫
D

Λ(α, β)P (α, β)d2αd2β , (2.7)

where

Λ(α, β) =
|α〉〈β∗|
〈β∗|α〉

(2.8)

and (α, β) vary independently over the whole complex plane D. The projec-
tion operator Λ(α, β) is analytic in (α, β).

Subsequent to the standard method, using the positive P -representation,
we convert the master equation into a FPE, then, it can be written in the
interaction picture as

∂

∂α
P (α, β, t) =

(
∂

∂α

((
1

2
γ + iδ

)
α+ κα2β∗ − E

)
+

∂

∂β∗

((
1

2
γ − iδ

)
α∗ + κβ∗2α− E∗

)
+
1

2

∂2

∂α2

(
−κα2

)
+

1

2

∂2

∂β∗2
(
−κβ∗2

))
P (α, β, t) . (2.9)

The associated Itô’s stochastic differential equations can be obtained as

dα

dt
= aα− κα2β∗ + E + g11ξ1(t) , (2.10)

dβ∗

dt
= a∗β∗ − κβ∗2α+ E∗ + g22ξ2(t) , (2.11)

where a = −(12γ + iδ) and ξi(t) are independent Gaussian noise terms with
zero mean values and satisfy the nonzero correlations of Eq. (2.3). The
coefficients g11 and g22 are the diagonal matrix elements of the matrix g that
can be deduced from the diffusion matrix D = ggT = diag[−κα2,−κβ∗2].
Then, g11 = i

√
κα and g22 = −i

√
κβ∗.

Equations (2.10), (2.11) constitute a coupled nonlinear differential equa-
tions of first order. In general, this system is solved numerically or trans-
formed to high order separable differential equations, which may also be
treated numerically. In order to avoid the numerical volume, we will investi-
gate an analytic treatment that can be useful to solve this nonlinear coupled
system.
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2.2. Stationary deterministic solutions

In order to explore the stability of the solutions of the coupled system,
the deterministic stationary solutions of system (2.10), (2.11) are required
and can be obtained by neglecting the noises terms and assuming the time
derivatives equal zero. Then

αs = −a
∗Z0 + E∗

κZ2
0

, (2.12)

β∗s = Z0 , (2.13)

where Z0 is a root of the third order equation

κEZ3
0 + a∗(a− a∗)Z2

0 + E∗(a− 2a∗)Z0 − E∗2 = 0 . (2.14)

In general, these solutions are not stable except for some special cases. In
particular, if the classical coherent field is ignored E = 0, then the stationary
solution is α = β = 0 and this solution is stable. Further, in the case of
γ = 0 and δ = 0; i.e., the cavity mode is in resonance with the classical
coherent filed and the vacuum fluctuations are negligible, then the stationary
solution is αs = β∗s = (Eκ )

1
3 . For E > 0, this solution is stable. On

the other hand, the solutions αs = −β∗s = i
2
3 (Eκ )

1
3 are unstable solutions

for E > 0. However, it is this sort of rearrangement of the deterministic
nonlinear dynamics in the extended phase space which can direct to irregular
solutions (unstable trajectories) in numerical treatments of the stochastic
differential equations when the quantum noises are large.

2.3. Linear noise approximation

If the master equation possesses nonlinear transition rates, it may be
impractical to solve it systematically and we recourse to other technical
approximations. One of them is the linear noise approximation, which plays
an important role in many different physics models [16, 17]. In the case of
small noise terms, the linear noise approximation where the fluctuations are
linearized around the steady state can be used. On the other hand, we should
be aware that the obtained results will be right just in the framework of this
approximation. However, the obtained results are of important interest.

Let us consider now the previous coupled system (2.10), (2.11). It is clear
that this equation does not include any very apparent small noise factor.
Nevertheless, a large driving field regime can be attained by assuming

κ =
b

E2
, α = xE , β∗ = yE , E∗ = E (2.15)
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then

dx

dt
= ax− bx2y + 1 + i

√
b

E
xξ1(t) , (2.16)

dy

dt
= a∗y − by2x+ 1− i

√
b

E
yξ2(t) . (2.17)

This clearly shows that in the regime of large driving field, the small lin-
earization approximation can be applied.

3. Solvability of the coupled ordinary equations

In order to investigate the deterministic solution of the stochastic equa-
tions, it is interesting to explore some real physical problem where the
stochastic differential equation can be converted to an ordinary coupled dif-
ferential equations. In the framework of large driving field, the noise terms
can be ignored. On the other hand, one of the main problems of mathe-
matics [31] appears when a, b are analytic functions and are added to the
original system. Now the new problem, incorporating the above assump-
tions, is generated by a coupled differential equations{

dx
dt = a(t)x+ b(t)x2y + f(t) ,
dy
dt = c(t)y + d(t)y2x+ g(t) .

(3.1)

A question which arises naturally is under what conditions on the functions
a(t), b(t), c(t) and d(t) does the given system have an explicit solution?

In this section, we will present a direct approach to solve the general
coupled model by considering the following two important cases.

3.1. The homogeneous coupled system

First of all, we begin with considering the following homogeneous coupled
system {

dx
dt = a(t)x+ b(t)x2y ,
dy
dt = c(t)y + d(t)y2x .

(3.2)

Multiplying both sides of the first and second equation of system (3.2) by y
and x, respectively, we get

y
dx

dt
= a(t)xy + b(t)x2y2 (3.3)

and
x
dy

dt
= c(t)xy + d(t)x2y2 . (3.4)
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Adding Eq. (3.3) and Eq. (3.4) together, we obtain

y
dx

dt
+ x

dy

dt
= (a(t) + c(t))xy + (b(t) + d(t))x2y2 . (3.5)

Now let
z = xy . (3.6)

Hence, Eq. (3.5) becomes

dz

dt
= A(t)z +B(t)z2 , (3.7)

where A(t) = a(t) + c(t) and B(t) = b(t) + d(t), which is a Bernoulli dif-
ferential equation. The substitution that is needed to solve this Bernoulli
equation is

z =
1

u
. (3.8)

A set of solutions to Eq. (3.7) is then given by

z =
e
∫
A(t)dt

−
∫
B(t)e

∫
A(t)dtdt+ α

, (3.9)

where α is a constant of integration.
Inserting Eq. (3.6) into system (3.2), we get

dx

dt
= (a(t) + b(t)z(t))x (3.10)

and
dy

dt
= (c(t) + d(t)z(t)) y . (3.11)

Consequently,
x(t) = βe

∫
(a(t)+b(t)z(t))dt (3.12)

and
y(t) = γe

∫
(c(t)+d(t)z(t))dt , (3.13)

where β and γ are two constants of integration, and the function z is given
by Eq. (3.9).

Thus, we have proved the following result on the separation of this sys-
tem.

Lemma 3.1. The two equations of system (3.1) are decoupled and solvable
separately, and the solutions are given by Eq. (3.12) and Eq. (3.13).
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3.2. The nonhomogeneous coupled system

In what follows, we will examine the nonlinear system (3.1).

3.2.1. x(t) and y(t) are proportional

System (3.1) can be transformed into another system in which the equa-
tions are decoupled and transformed into one equation. This separability
can be obtained if

y(t) = ϕ(t)x(t) , (3.14)

where ϕ(t) is an unknown function.
The substitution of (3.14) into system (3.1) gives a system which we

write as: 
dx
dt = a(t)x+ b(t)ϕ(t)x3 + f(t) ,

dx
dt =

c(t)ϕ(t)−ϕ′(t)
ϕ(t) x+ d(t)ϕ(t)x3 + g(t)

ϕ(t) .
(3.15)

Equating coefficients of alike terms of system (3.15), we get

c(t)ϕ(t)− ϕ′(t)
ϕ(t)

= a(t) , (3.16)

b(t) = d(t) (3.17)

and

ϕ(t) =
g(t)

f(t)
. (3.18)

Equation (3.16) gives

ϕ(t) = λe
∫
(c(t)−a(t))dt , (3.19)

where λ is a constant.
Thus, we have proved the following result on the separation of this sys-

tem.

Lemma 3.2. System (3.1) can be reduced to the Abel equation of the first
kind [30]

dx

dt
= f0(t) + f1(t)x+ f2(t)x

3 , (3.20)

where f0 = f, f1 = a and f2 = bϕ, such that

y =
g(t)

f(t)
x (3.21)
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if and only if the following conditions

g(t)

f(t)
= λe

∫
(c(t)−a(t))dt (3.22)

and Eq. (3.17) are satisfied.

For the previous problem, we have b = d, a = c∗ = −(γ2 + iδ) and
f = g = 1, then y = x and the reduced equation takes the form of

dx

dt
= 1 + ax+ bx3 , (3.23)

where λ = e−
∫
2iδdt.

Listed below are some special cases when the Abel equation (3.20) is
solvable.

1. If the functions fn(n = 0, 1, 2) are proportional that is fn(t) = knh(t),
then Eq. (3.20) is a separable equation. Therefore,∫

dx

k0 + k1x+ k2x3
=

∫
h(t)dt . (3.24)

2. If f0 = k0t
−n−2, f1(t) = k1

t and f2(t) = k2t
2n+1, the substitution

z(t) = tn+1x(t) leads to a separable equation

t
dz

dt
= k0 + (k1 + n+ 1)z + k2z

3 . (3.25)

3. If f0 = k0t
2m, f1(t) = k1t

m+n and f2(t) = k2t
3n−m, then the Abel

equation (3.20) can be reduced with the substitution x(t) = tm−nz(t)
to a separable equation

t−n−m
dz

dt
= k0 + k2z

3 . (3.26)

4. If the Abel equation (3.20) is a generalized homogeneous equation,
that is f0 = k0t

−n−2, f1(t) =
k1
t and f2(t) = k2t

2n+1, then it can be
reduced with the substitution z(t) = tn+1x(t) to a separable equation

t
dz

dt
= k0 + (k1 + n+ 1)z + k2z

3 . (3.27)
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3.2.2. General case

Let us start off by introducing the following transformations

x(t) = ψ(t)xh(t) and y(t) = χ(t)yh(t) , (3.28)

where ψ(t) and χ are two differentiable functions to be determined and
(xh(t), yh(t)) is a solution of its corresponding homogeneous system (3.2).

Substituting (3.28) into (3.1), we get{
xhψ

′(t) + ψ(t)dxhdt = a(t)ψ(t)xh + b(t)ψ2(t)χ(t)x2hyh + f(t) ,

yhχ
′(t) + χ(t)dyhdt = c(t)χ(t)yh + d(t)ψ(t)χ2(t)xhy

2
h + g(t) .

(3.29)

If we choose χ(t) = 1
ψ(t) , and taking into account that (xh(t), yh(t)) is a

solution of the homogeneous system (3.2), then (3.29) reduces to
xhψ

′(t) = f(t) ,

yh

(
1

ψ(t)

)′
= g(t) ,

(3.30)

or  ψ′(t) = f(t)
xh(t)

,(
1

ψ(t)

)′
= g(t)

yh(t)
,

(3.31)

that is  ψ′(t) = f(t)
xh(t)

,

− ψ′(t)
ψ2(t)

= g(t)
yh(t)

.
(3.32)

By solving system (3.32) for ψ(t), we get ψ(t) =
√
−f(t)
g(t)

yh(t)
xh(t)

, where
f(t)
g(t)

yh(t)
xh(t)

< 0.
Thus, we have

Lemma 3.3. System (3.1) has a solution of the form of

(x(t), y(t)) =

(
ψ(t)xh(t),

1

ψ(t)
yh(t)

)
, (3.33)

where

ψ(t) =

√
−f(t)
g(t)

yh(t)

xh(t)
(3.34)

provided f(t)
g(t)

yh(t)
xh(t)

< 0 and (xh, yh) is given by Eqs. (3.12) and (3.13).
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4. Conclusion

We have explored some techniques to analyse the quantum stochastic
differential equations, which are generated in the case of driven single cavity
mode in different reservoirs. One of the mean results resides essentially in
the conversion of the stochastic equations to ordinary differential equations.
Generalization coverage of the nonlinear coupled differential equation is pre-
sented. These results stimulate a sequence of questions of mathematical as
well as physical consequence. Ideally, one would like to be capable of pre-
dicting the behavior of paths for any set of initial conditions and parameter
values. This is very much an interesting question in general. The quantum
optics models offer an important source in the nonlinear aspects, and have
motivated the development of techniques to examine more and more difficult
and higher dimensional models.
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