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We discuss the generalization of high-energy resummation to trans-
verse momentum distributions to leading-logarithmic accuracy. We check
our procedure by reproducing the high-energy limit of the Feynman di-
agram calculations up to NLO to the Higgs production in gluon–gluon
fusion. Then, we estimate finite top mass corrections to the NLO Higgs pT

distribution.
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1. Introduction

Resummation of leading high-energy (or small-x) contributions has a
long story. These logs are logarithms of the ratio between the hard scale
Q2 of a particular process and the center-of-mass energy s. First pioneering
works [1] showed how to take into account at all orders in αs singular small-x
terms into DGLAP evolution. Then, a general high-energy resummation the-
ory in the case of inclusive cross sections at the first not trivial logarithmic
order was proposed [2, 4]. In the following years, this theory was applied
to resum leading small-x log (LLx) contributions for the most important
processes in collider physics: heavy-quark photo- and lepto-production [2],
deep-inelastic scattering [4], Standard Model [5, 6] and pseudo-scalar [7]
Higgs production in gluon–gluon fusion, Drell–Yan [8], heavy-quarks pro-
duction [9] and prompt-photon [10].

More recently, the resummation formalism was extended to the case of ra-
pidity distributions in Ref. [11], through a different, but equivalent, approach
to small-x resummation. This opens the possibility to study also exclusive
observables which are more relevant from a phenomenological viewpoint.
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Following the same desire, in Ref. [12], a general high-energy resumma-
tion theory for transverse momentum distributions was developed. Besides
being of theoretical and phenomenological interest, this extension repre-
sents another little step through a complete exclusive description of the
desired final state. In the following, we present formulas for a generic hadro-
initiated process, since generalization to lepto-, photo-initiated processes is
very straightforward [12].

The main ingredient of small-x resummation is the so-called kT factor-
ization, i.e. the observation that in the high-energy regime any observable
can be written as a convolution between a two-gluons irreducible hard part
and two reducible ladders of emissions, as shown in Fig. 1 (on the right).

Fig. 1. On the right, kT factorization for a general hadro-initiated observable into
a process-dependent hard part and two ladders of radiation; on the left, decompo-
sition of the ladder parts into multiple insertions of an emission kernel.

In the standard approach [2], kT factorization of the hadronic total cross
section σ is implemented as a convolution
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=
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(1.1)

between a hard coefficient function C and two transverse momentum de-
pendent gluon Green’s functions. The convolution in Eq. (1.1) is performed
on the longitudinal momentum fractions z, z̄ and on the transverse mo-
menta kT, k̄T of the two incoming gluons. High-energy resummation is then
achieved by taking G as a solution of the BFKL equation. More in details, by
taking a double Mellin transform w.r.t. x and Q2, convolution of Eq. (1.1)
factorizes into product

σ (N,M) = h (N,M,M)G (N,M)G (N,M) , (1.2)
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where the Mellin transforms are defined as

f (N,M1,M2) =

1∫
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dxxN−1

∞∫
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(
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)M1−1
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2
T

)
(1.3)

andG(N,M) is the double Mellin transform of G divided byM .h(N,M1,M2)
is the double Mellin transform of the hard coefficient function C times M1

and M2

h (N,M1,M2) = M1M2

1∫
0
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∞∫
0

dk2
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(
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T
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∫ (

k̄2
T
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2
T

)
(1.4)

and it is called impact factor. Renormalization group equation for G(N,M)
gives the pole condition M = γs(

αs
N ) with γs the BFKL anomalous dimen-

sion, which resums pole of N , i.e. logarithms of x. Small-x resummation is
then performed in N space as

σres
(
N,Q2

)
= h

(
N, γs

(αs

N

)
, γs

(αs

N

))
. (1.5)

In Ref. [11], instead, a different approach was proposed. Starting from kT

factorization, the reducible ladder part was computed through the iteration
of a collinear safe kernel γ, as depicted in Fig. 1 (on the left). In conclu-
sion, the cross section for n emissions from the upper leg and m emissions
from the lower leg is computed by n, m insertions of a radiation kernel γ
following by a subtraction of the first n− 1, m− 1 collinear poles according
to MS prescription. For inclusive cross section, this brings to the following
resummed expression:

σres
(
N,Q2

)
=
∑
n,m

σn,m = γ (N,αs)
2
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dk2
T

(
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T

)γ(N,αs)−1

×
∞∫
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T

(
k̄2
T

)γ(N,αs)−1
C
(
N, k2

T, k̄
2
T

)
R (N,αs)

2 , (1.6)

where the only difference with Eq. (1.5) is the scheme-dependent factor R
which takes into account that subtraction was performed in MS scheme.
In this approach, non-trivial information is encoded in the kernel γ. High-
energy resummation is then achieved by choosing γ to be the dual [13] of
the BFKL kernel (at the first order γ = γs).
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The generalized ladder approach of Ref. [11] permits to move from in-
clusive observable to more exclusive one since the complete kinematic of
radiation is calculable and under control. In the context of high-energy
resummation of transverse momentum distribution, it can be proved that
Eq. (1.6) still holds, as long as the hard coefficient function C is substituted
with a transverse momentum dependent hard function CpT .

This proceeding will be structured as following: in the next section,
the general framework of high-energy resummation of transverse momentum
distribution will be briefly summarized. Then, using the EFT Higgs boson
production as test process, we are going to check the conclusion of the theory
against a fixed order calculation. Then, in the last section, we will discuss
high-energy phenomenology for the Higgs pT distribution both in EFT case
and with complete dependence from the quark masses.

2. Transverse momentum distribution at high energy

Now we are going to briefly sketch the important points in the derivation
of the high-energy resummation theory for transverse momentum distribu-
tions. Our aim in this section is to highlight the key steps which permits
such a resummation rather than clarify all the mathematical subtleties. For
the complete proof, we refer the reader to the original paper, Ref. [12].

The starting point, as said before in the introduction, is kT factoriza-
tion. Figure 2 represents a general factorize observable. Black point in each
emission stands for an insertion of the radiation kernel γ(N,αs), while the
grey/red circle represents the transverse momentum dependent two-gluon
irreducible observable. Moreover, we decide to call S the desired final state
which we want to study with complete dependence from its transverse mo-
mentum.

The main feature of this approach is the possibility to study the com-
plete kinematic of the process. However, it is important to stress that if
we are interested to resum at LLx a particular observable of a tagged final
state S, we need to integrate over all the phase space of the other radia-
tion. Therefore, it is not possible to be differential also in the rapidity or in
the transverse momentum of some gluon emitted in the ladders (momenta
qi, . . . , qL and rj , . . . , rL of Fig. 2).

If all the transverse momenta of the gluons in the ladders are integrated
out, we are not considering angular correlation between them, and transverse
momentum pT of the desired final state S is going to depend only from the
momenta of the gluons exiting the ladders (pL and nL of Fig. 2). Therefore,
multiple insertions of the collinear kernel γ(N,αs) and next MS subtractions
go as in the inclusive total cross-section case.
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Fig. 2. Kinematics of the ladders. The blob at each emission vertex denotes inclu-
sion of LLx s- and t-channel gluon radiation to all orders.

In conclusion, the LLx resummed transverse momentum distribution of
a particular process is evaluated by the following formula in N space:

dσres

dp2
T

(
N, p2

T

)
= γ (N,αs)

2R (N,αs)
2

∞∫
0

dk2
T

(
k2
T
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×
∞∫

0
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(
k̄2
T

)γ(N,αs)−1
CpT

(
N, k2

T, k̄
2
T, p

2
T

)
, (2.1)

where kT and k̄T are the modulus of the transverse momenta of the gluons pL

and nL and CpT is the LO transverse momentum distribution of the off-shell
process

g∗ + g∗ → S . (2.2)

Another important point we want to focus on is the following: CpT represents
the process-dependent part of this resummation and it is an LO observable
of an off-shell process. It is not important if the on-shell limit of such
observable exists; if it is zero or does not exist, the resummed observable
Eq. (2.1), expanded in powers of αs, will start one order higher than CpT ,
implicitly requiring that at least one gluon must be emitted in the ladders.
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This property of high-energy resummation is very useful since very often the
LO observable for the off-shell process is simpler than putting off-shell the
LO on-shell diagrams.

We are going to clarify all these concepts by presenting the resummation
for a particular process: the Higgs boson production in gluon–gluon fusion
in the effective field theory.

In the case of Higgs boson production in the limit when the top mass
tends to infinity, we consider the Higgs coupled directly to gluons through
an effective vertex. However, being a 2 to 1 process, if we require a non-
vanishing transverse momentum, we need the radiation of at least one addi-
tional gluon. Hence, the LO on-shell process is the 2→ 2 process

g + g → H + g(q) . (2.3)

Nevertheless, as said before, to perform the high-energy resummation of this
observable, we need to compute the transverse momentum distribution of

g∗ + g∗ → H (2.4)

rather than the off-shell version of Eq. (2.3)

g∗ + g∗ → H + g(q) , (2.5)

since transverse dependence of process Eq. (2.4) is also not trivial without
any further emission.

The transverse momentum dependent hard function CpT(N, k2
T, k̄

2
T, p

2
T)

turns out to be

CpT
(
N, k2

T, k̄
2
T, p

2
T

)
=

1

m2
H

2σ0(
1 +

p2T
m2
H

)N
×

2π∫
0

dθ

2π
cos2 θδ

(
p2
T − k2

T − k̄2
T − 2kTk̄T cos θ

)
, (2.6)

where kT, k̄T and pT are the transverse momenta of the incoming gluons and
of the Higgs, respectively, N is the Mellin variable associated to x,

σ0 =
GFm

2
Hα

2
s

√
2

576π
(2.7)

and θ is the angle between the direction of k and k̄.
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Now by inserting the expression of CpT , Eq. (2.6), into Eq. (2.1) and solv-
ing the integrals [12], we come to the resummed expression for the transverse
momentum distribution of the Higgs in the framework of the effective theory

dσres

dξp

(
N, p2

T

)
= R (γ (N,αs))

2 σ0
ξ

2γ(N,αs)−1
p

(1 + ξp)
N

×

[
Γ (1 + γ (N,αs))

2 Γ (2− 2γ (N,αs))

Γ (2− γ (N,αs))
2 Γ (2γ (N,αs))

(
1 +

2γ (N,αs)
2

1− 2γ (N,αs)

)]
, (2.8)

where we introduce ξp =
p2T
m2
H
.

Through the identification in Eq. (2.8) of γ(N,αs) with the dual of the
BFKL kernel γ(N,αs) = γs(

αs
N ), we are finally able to resum at LLx this

observable.
However, to provide tests of the following construction, before turning to

phenomenology, we want to check the expansion in power of αs of Eq. (2.8)
against fixed order evaluation. This will be the subject of the following
subsection. We are going to present a fixed order evaluation directly in
the high-energy limit: this will permit us to compute completely analytical
expressions up to O(α4

s )1.

2.1. Fixed order calculation at high energy

We start by computing the αs-expansion of Eq. (2.8) up to O(α4
s ). The

BFKL anomalous dimension admits the following expansion:

γs

(αs

N

)
=
Ncαs

π

1

N
+O

(
α4

s

)
, (2.9)

while the R factor which takes into account the MS scheme selection begins
to be different from 1 at O(α3

s )

R (γs (αs, N)) = 1 +O
(
α3

s

)
. (2.10)

Using this information, the expansion of Eq. (2.8) at a non-zero value of ξp
turns out to be, in the limit when N → 0

dσ

dξp
(N, ξp) = σ0

[
2ᾱs

N

1

ξp
+

4ᾱs
2

N2

ln ξp
ξp

+O
(
α3

s

)]
+O

(
α4

s

)
(2.11)

1 In the original paper Ref. [12], the comparison at O(α4
s ) was presented only through a

numerical integration over rapidity of the full double differential fixed order evaluation
of Ref. [14].
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with
ᾱs =

αsNc

π
. (2.12)

It is interesting to note that the expansion starts at O(α3
s ), while CpT is of

O(α2
s ) (see Eqs. (2.6), (2.7)). This is due to the fact that the on-shell limit

of the off-shell process, Eq. (2.4), is zero at finite pT, as noted before.
We now want to reproduce this expansion by computing directly Feyn-

man diagrams at small-x. At O(α3
s ), we have to compute only the following

subprocess:
g + g → H + g (2.13)

since radiation of quarks is a subleading effect [12]. Diagrams which we have
to evaluate are collected in Fig. 3, with a useful light-cone decomposition
for the momenta of the various particle. When x → 0, the LLx behaviour
is dominated by the region when z̄, z � 1 and k2T

s ,
k̄2T
s � 1. In this region,

the contribution of the first diagram of Fig. 3 turn out to be in d = 4 − 2ε
dimension

dσ0−a

dξp
(x, ξp) = σ0

z̄

x
δ
(

1− z̄

x
+ ξ̄
)[
ᾱs

dz̄

z̄

dξ̄

ξ̄1+ε

4π

Γ (1− ε)

]
δ
(
ξp − ξ̄

)
(2.14)

with ξ̄ =
k̄2T
m2
H

and ᾱs, σ0 defined as in Eqs. (2.12) and (2.7). By solving

integrations over z̄ and ξ̄ using the two delta constraints and by taking the
limit ε→ 0, we find the result for the single emission from the upper leg

dσ0−a

dξp
(x, ξp) = σ0ᾱs

1

ξp
. (2.15)

Since the contribution from the other leg is the same by symmetry and due
to the fact that interferences between emissions are subleading in the high-
energy regime, we can easily come to our final result for the O

(
α3

s

)
(in the

Mellin space)

dσ0

dξp
(N, ξp) = 2σ0ᾱs

1

ξp

1∫
0

dxxN−1 = σ0
2ᾱs

N

1

ξp
(2.16)

as predicted by Eq. (2.11).
Now we move to O(α4

s ). In this case, we have to evaluate three contribu-
tions (see Fig. 4): when the two emissions of gluons come from the upper leg
or from the lower leg or when they are one from the upper leg and one from
the lower leg. Clearly, as before, due to symmetry the first two contributions
are exactly equal.
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Fig. 3. Feynman diagrams contributing at O(α3
s ). A useful light-cone decomposi-

tion for the momenta is also reported.

Fig. 4. Feynman diagrams contributing at O(α4
s ), with light-cone decomposition

for the momenta in the high-energy regime. It can be proved that in the small-x
limit at this order in αs, kT

2
1 � kT

2
2 [11, 12].

We start by considering the case of a double emissions from the same leg.
Since angular correlations can be shown to be subleading at small-x, from
now on we will neglect all of them. Consequently, we will omit all angular
terms like (4π)ε

Γ (1−ε) as they are always subtracted in the MS scheme [11]. At
small-x, the result for the differential cross section is

dσ1−a

dξp
(x, ξp)=σ0

z̄1z̄2

x
δ
(

1− z̄1z̄2

x
+ξ̄1

)[
ᾱs

dz̄2

z̄2

dξ̄2

ξ̄1+ε
2

][
ᾱs

dz̄1

z̄1

dξ̄1

ξ̄1+ε
1

]
δ
(
ξp−ξ̄1

)
.

(2.17)
Now, using the two delta constraints we solve the integration over z̄1 and ξ̄1

obtaining at LLx
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dσ1−a

dξp
(x, ξp) = σ0ᾱs

2

 1∫
x

dz̄1

z̄1

ξp∫
0

dξ̄2

ξ̄2

 1

ξ1+ε
p

+O(1)

= σ0ᾱs
2 ln

1

x

[
−1

ε

1

ξ1+2ε
p

]
+O(1) . (2.18)

Last step is to take the small-ε limit and perform the MS subtraction. At
finite pT, we obtain

dσ1−a

dξp
(x, ξp) = σ0ᾱs

2 ln
1

x

ln ξp
ξp

. (2.19)

Equation (2.19) is also the result for the double radiation from the lower leg.
To conclude our check, we need to add the term coming from the diagram
in which the two emissions are one for each leg. In this case, the differential
cross section in the high-energy regime is

dσ1−c

dξp
(x, ξp) =

σ0

2

z̄z

x
δ
(

1− z̄z

x
+ ξp

)[
ᾱs

dz

z

dξ

ξ1+ε

] [
ᾱs

dz̄

z̄

dξ̄

ξ̄1+ε

]
dθ

2π

×δ
(
ξp − ξ − ξ̄ − 2

√
ξ̄ξ cos θ

)
, (2.20)

where θ, as in Eq. (2.6), is the angle between the direction of the momenta k
and k̄. To solve the various integrations, we first note that Eq. (2.20) is sym-
metric by exchanging ξ with ξ̄. Hence, we can halve the integration region
by requiring ξ > ξ̄ and recover the other part by exploting the symmetry.
Then, we perform the following change of variables:

ξ̄ = ξpw ξ1 , ξ = ξp ξ1 , cos θ = t . (2.21)

We thus write Eq. (2.20) as, by ignoring terms beyond LLx

dσ1−c

dξp
(N, ξp)=σ0ᾱs

2

1∫
x

dz

z

1

ξ1+2ε
p

1∫
−1

dt√
1−t2

1∫
0

dw
(1+w+2

√
wt)

2ε

w1+ε
+O(1) .

(2.22)
Finally, we perform the expansion ε→ 0 and the MS subtraction to obtain

dσ1−c

dξp
(x, ξp) = 2σ0ᾱs

2 ln
1

x

ln ξp
ξp

. (2.23)
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Putting together Eq. (2.19) with Eq. (2.23), we then arrive to the complete
O(α4

s ) prediction in the small-x limit (in the Mellin space)

dσ1

dξp
(N, ξp) = 4σ0ᾱs

2 ln ξp
ξp

1∫
0

dxxN−1 ln
1

x
= σ0

4ᾱs
2

N2

ln ξp
ξp

(2.24)

in agreement with the expansion of the high-energy resummed formula (2.11).
Hence, we have reproduced the first orders of the expansion through

an explicit computation of the Feynman diagrams in the high-energy limit,
providing another check on the resummed construction. Being our theory on
solid ground, we are now able to discuss some phenomenological application
of the technique. Next section will be devoted to the study of mass quark
effects on the pT distribution of the Higgs.

3. Higgs pT distribution: Phenomenology

We now turn to study the phenomenological implication of our high-
energy resummation on the pT distribution of Higgs boson production.

In the previous section, Higgs boson production in gluon fusion at high
energy was evaluated in the effective field theory limit. This general formal-
ism can be applied to the same observable, but now retaining full heavy-
quark mass dependence. Such a calculation was performed in Ref. [15]. We
want now to review these results and use them to qualitatively estimate
mass corrections beyond leading order.

It is well-known that the impact of high-energy resummation is quite
small at the current work energies of LHC Run 2. However, in cases when
fixed order evaluation is not available, αs-expansion of the resummed result
can be used to extract qualitatively information about the behaviour of the
unknown coefficient.

Hence, in this section, we are first going to validate this high-energy
approximation at LO and NLO at the hadronic level and then to provide a
prediction for the transverse momentum distribution at NLO with complete
mass quark dependence based on the high-energy approximation.

High-energy resummation predicts a very different behaviour at large-pT
between the pointlike case (as in the effective field theory limit) and the
resolved case (as with full heavy-quark mass dependence) [12]. While when
the interaction is pointlike, the coefficients grow logarithmically with pT (ξp),
in the resolved case, the coefficients dk(ξp) as ξp → ∞ will vanish at least
as an extra power of ξ−1

p in such a way that the integral over all transverse
momenta is finite. In formulas
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dσ

dξp
∼
x→0

σLO

ξp
×



∞∑
k=1

αks lnk−1 1

x

k−1∑
n=0

ckn lnn ξp , pointlike , (3.1a)

∞∑
k=1

dk (ξp)α
k
s lnk−1 1

x
, resolved . (3.1b)

For this reason, the high-energy approximation is the right approximation to
study mass quark effects in the large-pT region, when the EFT approximation
badly fails.

All plots are produced with µ2
R = µ2

F = Q2 and with the PDF4LHC15
NNLO set of parton distributions PDF4LHC15_nnlo_100 [16]. Q2 is a pT-
dependent hard scale

Q2 =
(√

m2
H + p2

T + pT

)2
; (3.2)

with this choice of hard scale, hadronic transverse momentum distribution
is returned by a standard convolution between the partonic distribution and
a pT-independent PDF luminosity [15].

We start from the validation of the high-energy expansion, by comparing
with the known fixed order full result. We define a high-energy approxima-
tion by taking the expansion of our resummed prediction as

dσres

dξp
(τ, ξp) =

dσhe
0

dξp
(τ, ξp)α

3
s +

dσhe
1

dξp
(τ, ξp)α

4
s +O

(
α5

s

)
=

dσhe
0

dξp
(τ, ξp)α

3
s

(
1 + αsK

(1),he (τ, ξp)
)
, (3.3)

where in the second line, we have also defined the NLO K-factor. In Fig. 5,
we show several comparisons — two for dσhe

0
dξp

and two for dσhe
1

dξp
. In the upper

left panel, we show the ratio between the LO EFT and the LO EFT high-
energy approximation, in the upper right panel, the ratio between the full
mass-dependent LO result and its high-energy approximation. The ratio
with the full LO pointlike is also shown. Both these plots are computed at
LHC 13 TeV. In the lower panels, we show the validation at NLO at LHC
13 TeV (on the left) and for a wide range in pT and

√
s (on the right)2.

These plots show that high-energy approximation, even if it is accurate
only at very high center-of-mass energy, much higher than the current work
energies at the LHC Run 2, it is quite stable in a large range of pT. At the

2 Comparing with the original Ref. [15], in the contour plot, we double the grid of
points near the kinematic boundary to obtain more accurate results. However, at the
moment, this region is inaccessible for present colliders.
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Fig. 5. Several comparisons for high-energy approximation validation. In the upper
panels, comparisons between LO full coefficient and LO high-energy approximation
both in the EFT and with full masses dependence are shown. In the lower panels,
we validate at NLO high-energy approximation by comparing EFT full result with
its high-energy expansion, at 13 TeV (on the right) and in a wide range of both pT

and
√
s (on the left).

LHC 13 TeV, at LO, it is about 60% of the full theory, and only slightly
worse at NLO. On the contrary, the effective field theory result is driven by
the fact that at the parton level, it has the wrong large-pT power behaviour,
and it is off by an increasingly large factor: already for

√
s = 13 TeV at

pT ∼ 1 TeV, it is in fact too large by about one order of magnitude.
By comparing results at LO at LHC 13 TeV obtained in EFT or in full

theory (left panels of Fig. 5), it is clear that the quality of the high-energy
approximation is similar in both cases. Due to this observation, where only
EFT exact result is available, we expect the accuracy, we extract by the
pointlike comparison, may be used as a good estimator of the uncertainty
also in the massive case.

Moreover, the contour plot of Fig. 5 shows that the high-energy approx-
imation becomes better as the center-of-mass energy is increased at fixed pT
but also, if pT is varied at fixed energy, that the quality of the approxima-
tion remains constant in a wide range of transverse momenta. It only starts
deteriorating when the transverse momentum becomes of the same order
of its upper kinematic limit

√
s

2 . This is expected because the high-energy
limit holds when

√
s is much larger than all other scales: remember that
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in the derivation of the high-energy regime in the previous section, we have
considered the limit

p2
T

s
� 1 . (3.4)

Logs of this ratio, which are subleading at small-x, might be important at
very large pT and should be resummed to all orders [17]. However, in this
region, the transverse momentum distribution is tiny, so, in practice, the
high-energy approximation is uniformly accurate throughout the physically
relevant region.

We now finally turn to the pT spectrum of the Higgs boson with fi-
nite quark masses effects beyond leading order at LHC 13 TeV. In Fig. 6,
three different determination of the K-factor, Eq. (3.3) are plotted in the
high-pT region we are interested in: using the full pointlike NLO result
or the high-energy approximation both in EFT and with full mass depen-
dence. In each case, both the LO and NLO contributions are computed using
the same approximation. This plot suggests two main conclusions. First,
by comparing dashed (red) line vs. dot-dashed (green) line, namely EFT
full result against high-energy approximation of it, we see our expansion at
small-x is quite good, with an accuracy of about 20% or better for all pT &
200 GeV, in agreement with the general validation just exposed. Second,
even though the shape of the distribution (see Eqs. (3.1a), (3.1b)) at high pT
differs between the pointlike and massive case (a different power of pT), the
K-factors are similar and approximately pT independent, at least, in the only
case in which we can compare the pointlike and massive results, namely the
high-energy limit (dot-dashed (green), vs. solid curves (blue)).
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Fig. 6. (Colour on-line) Various approximations to the NLO Higgs transverse
momentum distribution K-factor: using NLO and LO pointlike full coeffi-
cients (dashed/red), the NLO and LO pointlike high-energy approximation (dot-
dashed/green) or the NLO and LO full mass dependent high-energy approximation
(solid/blue).
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From Fig. 6, we can also extract one of the conclusions of this proceeding.
If one wishes to use the NLO pointlike result to approximate the real Higgs pT
distribution, a better approximation can be obtained by using the pointlike
NLO to compute the K-factor and using it to rescale the full massive leading
order rather than to add to it.

Indeed, the quality of this approximation is possibly comparable to that
obtained by summing the LO full massive coefficient with the high-energy
approximation of the NLO, as you can appreciate from Fig. 7.
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Fig. 7. Various approximation to the NLO Higgs transverse momentum distribu-
tion. Colours and line styles follow the same definition of Fig. 6.

4. Conclusions and outlook

We have reported on an extension of high-energy factorisation to trans-
verse momentum distributions. It represents a further step in a more ex-
clusive description of the final state in the high-energy regime. Moreover,
we reproduce order by order in αs the high-energy limit through a direct
evaluation of Feynman diagrams in the small-x limit. As a first applica-
tion, we have performed the resummation of the pT distribution for Higgs
production in gluon–gluon fusion, both with finite quark masses and in the
infinite mass limit. Using this information, we estimate the impact of quark
masses corrections on the Higgs NLO pT distribution at LHC 13 TeV. We
found that even if the full NLO pointlike result is off by an increasingly large
factor for pT & 200 GeV, the pointlike K-factor is of the same order as the
prediction computed using full massive high-energy expansion. Hence, full
massive LO result rescaled by pointlike NLO K-factor can be used to obtain
a reasonable approximation for the unknown massive NLO correction of the
Higgs pT distribution.

A better understanding of such effects can be obtained by matching the
high-energy resummation with other known resummations. Matching pro-
cedures with threshold resummation or transverse momentum resummation
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are under studies [18, 19]. Even a more exclusive extension of the high-
energy resummation technique (such as high-energy resummation double
differential in rapidity and transverse momentum) is highly desirable.
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