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We discuss the CoLorFulNNLO method for computing higher order ra-
diative corrections to jet cross sections in perturbative QCD. We apply our
method to the calculation of event shapes and jet rates in three-jet produc-
tion in electron–positron annihilation. We validate our code by comparing
our predictions to previous results in the literature and present the jet cone
energy fraction distribution at NNLO accuracy. We also present prelimi-
nary NNLO results for the three-jet rate using the Durham jet clustering
algorithm matched to resummed predictions at NLL accuracy, and a com-
parison to LEP data.
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1. Introduction

The strong coupling αs is one of the fundamental parameters of the Stan-
dard Model of particle physics thus, its precise determination is mandatory.
Nowadays, event shapes and jet rates measured in three-jet formation in
electron–positron annihilation are still among the most precise tools used
for accurate extractions of αs from data. In these analyses, the measure-
ment of αs involves fitting theoretical predictions for a given observable and
collider energy to observations. Hence, theoretical input is essential and
the goodness of the fitting procedure relies heavily on the quality of the
theoretical predictions used.

In the high-energy particle physics, we may approach the quality of the-
oretical predictions from two perspectives. First, the general framework for
performing calculations is perturbation theory, where in the case of QCD the
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perturbative parameter is the strong coupling, αs. Due to the complexity of
calculations, only the first few terms of the perturbative series can be evalu-
ated and this truncation introduces a theoretical uncertainty manifested by
the dependence of the predictions on non-physical parameters such as the
renormalization and factorization scales. Thus, one way of increasing the
theoretical precision of the calculations is by including exact higher order
corrections in the perturbation theory. Second, the actual calculations of
physical observables involve numerical integrations over the physical phase
space and this introduces a statistical uncertainty in the predictions. Hence,
formal higher order precision must be supplemented by a good numerical
accuracy to obtain results that are useful for experimental needs.

For three-jet production in electron–positron annihilation, all matrix
elements necessary for the computation of next-to-next-to-leading order
(NNLO) corrections have been known in the literature for some time
[1–4], and indeed NNLO corrections to several event shapes [5–8] and jet
rates have been evaluated [9, 10]. Hence, this process is not only interesting
from a phenomenological point of view, but it also provides an ideal testing
ground for new computational methods at this order in perturbation theory.
In this contribution, we summarize a completely local subtraction method,
called CoLorFulNNLO, for computing QCD corrections to jet cross sections
at NNLO accuracy and present the application of our framework to three-
jet production in electron–positron annihilation. Our method demonstrates
excellent numerical stability and accuracy for the considered observables.

2. The CoLorFulNNLO method

In perturbative QCD, the expansion of a jet cross section defined by
some physical quantity J can be formally written up to NNLO accuracy as

σ[J ] = σLO[J ] + σNLO[J ] + σNNLO[J ] + . . . (1)

Focusing on the production ofm jets from a colorless initial state, the leading
order (LO) cross section is simply given by integrating the fully differential
Born cross section for the production of m partons over the m-parton phase
space defined by the observable J

σLO[J ] =

∫
m

dσBmJm . (2)

The next-to-leading order (NLO) correction can be written as the sum of
two terms

σNLO[J ] =

∫
m+1

dσRm+1Jm+1 +

∫
m

dσVmJm , (3)
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and is finite for any infrared-safe observable by the general theorem of
Kinoshita, Lee and Nauenberg (KLN). Although the KLN theorem guar-
antees the finiteness for the sum of the real emission (σRm+1) and virtual
(σVm) corrections, it does not say anything about the contributions separately
which are indeed infinite in four spacetime dimensions. Using conventional
dimensional regularization in d = 4 − 2ε dimensions to regularize the two
pieces, the singularities become poles in ε, which nevertheless cancel between
the two contributions in the final result. However, this cancellation is not
manifest. On the one hand, the singularities in the real emission part have a
kinematic origin: they are due to divergent phase-space integrals when one
final-state parton becomes unresolved. On the other hand, the ε-poles in the
virtual correction arise from the integration over the loop momentum. In
general, the squared matrix elements and observables in QCD are much too
complicated to perform an analytic calculation in d dimensions, and our aim
is to carry out the computations in four dimensions using the Monte Carlo
integration techniques. To do so, the real and virtual emission contributions
have to be made finite separately which we achieve by local subtractions.
In this method, an approximate differential cross section, dσR,A1

m+1 , is sub-
tracted from the real emission contribution. This approximate cross section
is constructed carefully to have the same kinematic singularity structure
(in d dimensions) as the real emission cross section. Thus, the difference
is free of non-integrable kinematic singularities and the phase-space integral
can be evaluated in four dimensions using standard Monte Carlo techniques.
The poles appearing in the virtual contribution are then removed by adding
back the approximate cross section after integrating over the momentum
and summing over the quantum numbers (color, flavor) of the unresolved
particle (these operations are collectively denoted by

∫
1). Then the NLO

correction takes the form of

σNLO[J ] =

∫
m+1

[
dσRm+1Jm+1 − dσR,A1

m+1Jm

]
d=4

+

∫
m

dσVmJm +

∫
1

dσR,A1
m+1Jm


d=4

, (4)

where now both contributions are finite as discussed. Several explicit con-
structions are available for the approximate cross section dσR,A1

m+1 in the lit-
erature [11–15].

The NNLO correction is composed of three different contributions

σNNLO[J ] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRVm+1Jm+1 +

∫
m

dσVV
m Jm . (5)
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The first term is the double real (RR) piece which involves tree-level squared
matrix elements with m + 2-parton kinematics and develops singularities
when one or two partons become unresolved. The second term is the real–
virtual one (RV) and contains the interference of one-loop and tree-level
matrix elements with m+ 1-parton kinematics. This contribution develops
both kinematic singularities when a parton becomes unresolved and also
contains explicit ε-poles coming from one-loop amplitudes. Finally, the third
term is the double virtual (VV) contribution, which includes the interference
of them-parton two-loop and tree-level matrix elements as well as the square
of the m-parton one-loop matrix element. This contribution is free from
kinematic singularities (the infrared-safe jet function screens any remaining
divergences of the squared matrix elements), but it contains explicit ε-poles
which come from integrations over loop momenta.

The idea behind the CoLorFulNNLO method is to define completely lo-
cal subtraction terms for the NNLO correction in the same spirit as was done
at NLO accuracy. Thus, the m + 2-parton contribution is made finite by
introducing local subtraction terms whose kinematic singularities exactly re-
produce those of the double real emission matrix elements (in d dimensions)
in each single and double unresolved limit

σNNLO
m+2 [J ] =

∫
m+2

{
dσRR

m+2Jm+2 − dσRR,A2
m+2 Jm

−
[
dσRR,A1

m+2 Jm+1 − dσRR,A12
m+2 Jm

]}
d=4

. (6)

In Eq. (6), dσRR,A2
m+2 regularizes those singularities of the RR contribution

which emerge in double unresolved limits, while dσRR,A1
m+2 serves as a local

counterterm for single unresolved singularities. The last term, dσRR,A12
m+2 ,

is introduced to remove both the kinematic singularities that develop in
dσRR,A2

m+2 in single unresolved regions and also the singularities of dσRR,A1
m+2 in

double unresolved ones. The precise definitions of all subtraction terms that
appear in Eq. (6) were given in [16].

The m+ 1-parton contribution takes the form of

σNNLO
m+1 =

∫
m+1

{(
dσRVm+1 +

∫
1

dσRR,A1
m+2

)
Jm+1

−
[
dσRV,A1

m+1 +

(∫
1

dσRR,A1
m+2

)
A1

]
Jm

}
d=4

, (7)
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where the first line of Eq. (7) contains the RV contribution as well as the inte-
grated form of the single unresolved subtraction term in Eq. (6),

∫
1 dσ

RR,A1
m+2 .

The sum of these two terms is free of ε-poles [14], however both terms still
contain kinematical singularities when a parton becomes unresolved. These
singularities are regularized by the local subtraction terms on the second line
of Eq. (7). The exact definitions of these subtraction terms were presented
in [17].

The last contribution to the NNLO correction is the m-parton one which
contains the VV contribution along with the integrated forms of all remain-
ing subtraction terms which we have not yet added back. Schematically, this
can be written as

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσRR,A2

m+2 − σRR,A12
m+2

]

+

∫
1

[
dσRV,A1

m+1 +

(∫
1

dσRR,A1
m+2

)
A1

]}
d=4

Jm . (8)

Since the m + 2- and m + 1-parton contributions in Eqs. (6) and (7) are
both finite by construction, the finiteness of the m-parton piece in Eq. (8)
is automatic and guaranteed by the KLN theorem. The various integrated
approximate cross sections that appear in Eq. (8) were computed in a series
of papers [18], culminating in the explicit demonstration of the finiteness
of this contribution for electron–positron annihilation into three jets in [8].
Since the subtractions render all three contributions finite, they can be sep-
arately integrated numerically using standard Monte Carlo techniques. We
stress that since all subtractions are completely local, the integrations may
be performed with any convenient numerical procedure.

3. Electron–positron annihilation into three jets

We have implemented the CoLorFulNNLO scheme as outlined above into
the fortran90 program library MCCSM (Monte Carlo for the CoLorFulNNLO
Subtraction Method). The implementation is completely general for pro-
cesses with colorless initial states, with only the squared matrix elements for
a given process (including the color- and spin-correlated ones) as necessary
inputs.

As a first application, we used our method and code to compute NNLO
QCD corrections to physical observables in three-jet production in electron–
positron annihilation [7, 8]. Since these corrections are known for several
quantities in the literature [5, 6, 9, 10] (see also [19] which describes the
EERAD3 program implementing the computations of [5, 9]), this provides
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an excellent opportunity to validate our method and the framework imple-
menting it. Hence, we compared our predictions for the six standard event
shape variables of thrust (T ), C-parameter, total- and wide-jet broadening,
heavy-jet mass and the two-to-three jet transition variable y23 in the Durham
jet clustering algorithm to the predictions of [5, 6]. We performed the com-
parisons at the LEP2 energy of

√
s = mZ = 91.2 GeV. The perturbative

coefficients were defined using the normalization common at lepton–lepton
colliders

O

σ0

dσ

dO
=
αs

2π
OA(O) +

(αs

2π

)2
OB(O) +

(αs

2π

)3
OC(O) +O

(
α4
s

)
, (9)

where σ0 is the leading order cross section for e+ e− → hadrons and O is
the event shape variable for which we obtain the NNLO accurate prediction.

We present the comparison of our predictions to those of EERAD3 (de-
noted by GGGH1) and Ref. [6] (denoted SW2) for two representative cases,
thrust (τ = 1 − T ) and the C-parameter in Fig. 1 and Fig. 2. In these
plots, the left-hand panels show the physical predictions for the observables
at LO, NLO and NNLO accuracy, together with the data measured by the
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Fig. 1. Left: physical predictions for thrust (τ = 1 − T ) at LO, NLO and NNLO
accuracy in QCD with bands representing scale uncertainty. Data measured by
the ALEPH Collaboration [20] is also shown. Right: the τ C(τ) NNLO coefficient
of the thrust distribution. In both figures, the lower panels show the ratio of
the predictions of Ref. [6] (SW) and EERAD3 (GGGH) to CoLorFulNNLO. In the
middle panel of the right figure, results from MadGraph5_aMC@NLO [23] (MG5)
are also shown above the Born kinematic limit of τ > 1/3.

1 We are grateful to G. Heinrich for providing the predictions of EERAD3 for us.
2 In these comparisons, we use updated (with respect to those published in Ref. [6])
but unpublished predictions provided to us by S. Weinzierl. We are grateful to
S. Weinzierl for providing these updated results for us.
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ALEPH Collaboration. The bands correspond to scale variations in the range
of [mZ/2, 2mZ ] with µ0 = mZ chosen as the central scale. While these plots
clearly show the convergence of the perturbative series for both the τ and
C-parameter distributions as we go from LO to NLO and NNLO accuracy,
the comparison with data also makes it evident that parton shower and non-
perturbative corrections are sizable. In the lower panels, we plot the ratios
of the predictions of GGGH (bottom panel) and SW (middle panel) normal-
ized to our results and find agreement between the various computations,
except at the kinematic limits of the distributions.
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Fig. 2. The same as Fig. 1 for the C-parameter distribution. In the middle panel
of the right figure, results from Ref. [22] (NT) are also shown above the Born
kinematic limit of Cpar > 3/4.

In order to better quantify the level of agreement among the perturbative
predictions, in the right-hand panels of Fig. 1 and Fig. 2, we present the
comparisons of the NNLO coefficients directly. We plot the distribution
of the NNLO coefficient OC(O) in the top panels, while the middle and
bottom panels again show the ratios of the predictions of SW and GGGH
normalized to our results. The narrow gray bands in the middle and lower
panels show the numerical uncertainty of our computation due to Monte
Carlo integrations. We observe a very good numerical convergence of our
method at NNLO. Examining these plots, we see that the agreement is
generally quite good between the predictions of SW and CoLorFulNNLO
and reasonably good between GGGH and CoLorFulNNLO, with the precise
comparison to GGGH being hampered by the somewhat large numerical
uncertainties of those predictions. We also see that significant deviations
are present for small and large values of the event shapes. For example, the
differences between CoLorFulNNLO and the two other predictions grow up
to a factor of two for τ > 1/3. However, in this region, the contribution
from the three-particle final state vanishes and the thrust distribution is
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determined by a four-jet final state. Hence, in this region, C(τ) is given
by NLO corrections to four-jet production, which have been known for a
long time [21, 22] and can also be computed by modern automated tools
such as MadGraph5_aMC@NLO [23]. We find that our predictions are in
complete agreement with those of MadGraph5_aMC@NLO for the thrust
distribution for τ > 1/3, and with the computation of Ref. [22] for the
C-parameter distribution for Cpar > 3/4. For small values of the event
shapes, we checked that our predictions are in agreement with the resummed
computations obtained from SCET [24–26] expanded to O(α3

s ).
Beside the standard event shape variables discussed above, we computed

for the first time predictions at NNLO accuracy for oblateness, energy–
energy correlation (EEC) [7] and jet cone energy fraction (JCEF) [8]. Here,
we present our results for jet cone energy fraction, which is defined as

dΣJCEF

d cosχ
=
∑
i

∫
dσe+ e−→i+X

Ei

Q
δ(cosχ+ cos θij)δ

(
cosχ− ~pi · ~nT

|~pi|

)
,

(10)
where Q is the center-of-mass energy, Ei is the energy of particle i (in the
center-of-mass frame), cos θij is the cosine of the angle between the three-
momenta of particles i and j (also in the center-of-mass frame) and ~nT is the
thrust axis pointing from the heavy- to the light-jet mass hemisphere. Our
physical predictions for the jet cone energy fraction at LO, NLO and NNLO
accuracy together with our prediction for the NNLO coefficient CJCEF(χ) are
presented in Fig. 3. Our code displays a good numerical convergence also for
these distributions. In the left-hand panel showing the physical prediction,
we have also included experimental data measured by the DELPHI Collab-
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Fig. 3. Left: physical predictions for jet cone energy fraction at LO, NLO and
NNLO accuracy in QCD with bands representing scale uncertainty. Data measured
by the DELPHI Collaboration [27] is also shown. Right: the CJCEF(χ) NNLO
coefficient of the jet cone energy fraction distribution. Error bars represent the
numerical uncertainty coming from Monte Carlo integrations.
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oration. We observe that perturbative corrections are rather small over a
wide range of angles. Hadronization corrections and detector corrections
for this observable are also known to be quite small and indeed the per-
turbative result alone is seen to give a rather reasonable description of the
data. Hence, jet cone energy fraction is a particularly simple and promising
observable for the precise extraction of αs from data [27].

Finally, we turn to the computation of jet rates at NNLO accuracy. The
production rate for n-jet events in electron–positron annihilation is given by
the ratio of the n-jet cross section to the total hadronic cross section

Rn(ycut) =
σn(ycut)

σtot
. (11)

Here, the n-jet cross section σn(ycut) must be defined using an infrared-
safe jet clustering algorithm. One class of such algorithms are the exclusive
sequential recombination algorithms. Here, we focus on the Durham algo-
rithm [29] for which the resolution variable is defined as

yij =
2min

(
E2

i , E
2
j

)
(1− cos θij)

Q2
(12)

and recombination is performed in the E-scheme, i.e., the four-momenta of
the objects to be combined are simply added.

We present our preliminary physical predictions for R3(ycut) in the
Durham clustering algorithm in the left panel of Fig. 4 at LO, NLO and
NNLO accuracy, together with measured data from the OPALCollaboration.
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Fig. 4. Left: preliminary physical predictions for the three-jet rate R3(ycut) in the
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representing scale uncertainty. Data measured by the OPAL Collaboration [28] is
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Although the inclusion of the NNLO corrections vastly improves the theo-
retical description of the measurement, a sizable difference remains between
the NNLO prediction and the data for small values of the resolution parame-
ter. We attribute this difference to missing parton shower (or resummation)
and hadronization effects. In order to improve the situation, we match our
perturbative prediction to the resummed result, which is known for R3(ycut)
in the two-jet limit (i.e., ycut → 0) up to next-to-leading-logarithmic (NLL)
accuracy [29]. (The distribution of the two-to-three jet transition variable
y23 in the Durham algorithm is known up to NNLL accuracy [30].) This
matching is performed as follows. We write the fixed order prediction for
the three-jet rate at NNLO accuracy as

RNNLO
3 (ycut) =

αs

2π
A3(ycut) +

(αs

2π

)2
B3(ycut) +

(αs

2π

)3
C3(ycut) . (13)

The resummed prediction at NLL accuracy can be written in the following
form:

RNLL
3 (ycut) = 2[∆q(Q)]2

Q∫
Q0

dq Γq(Q, q)∆g(q) , (14)

where Q0 =
√
ycutQ and the ∆i(Q

′′) and Γi(Q′′, Q′) functions are given ex-
plicitly in [29] up to NLL accuracy. When evaluating Eq. (14) numerically,
we use the one-loop running of αs in ∆i(Q

′′) and Γi(Q′′, Q′). In order to per-
form the matching, we expand Eq. (14) in powers of αs up to and including
O(α3

s ) terms

RNLL
3 (ycut) =

αs

2π
ANLL

3 (ycut) +
(αs

2π

)2
BNLL

3 (ycut) +
(αs

2π

)3
CNLL
3 (ycut)

+O
(
α4
s

)
. (15)

Our final expression at NNLO+NLL accuracy is then given by

RNNLO+NLL
3 (ycut) = RNLL

3 (ycut) +
αs

2π

[
A3(ycut)−ANLL

3 (ycut)
]

+
(αs

2π

)2 [
B3(ycut)−BNLL

3 (ycut)
]

+
(αs

2π

)3 [
C3(ycut)− CNLL

3 (ycut)
]
. (16)

The right-hand panel of Fig. 4 shows the preliminary results of this matching
procedure. We indeed see a marked improvement of the theoretical descrip-
tion, together with a significant reduction in the relative scale uncertainty
below ycut ∼ 10−2. Since jet rates computed using different jet algorithms
can have different sensitivities to non-perturbative effects, it would be inter-
esting to extend these results to other jet clustering algorithms as well.
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4. Conclusions

In this contribution, we briefly outlined the CoLorFulNNLO subtraction
method for computing NNLO QCD corrections for processes with colorless
initial states. As a first application, the method was used to compute phys-
ical observables in three-jet production in electron–positron annihilation.
After validating our numerical program by comparisons to existing compu-
tations, we presented NNLO QCD results for jet cone energy fraction, which
has not been computed at NNLO accuracy before. We find that the per-
turbative corrections for this observable are rather small for a wide range of
angles. This, together with the smallness of the hadronization and detector
corrections, makes the jet cone energy fraction a very promising observable
for the precise extraction of the strong coupling from data. Finally, we pre-
sented preliminary results for the three-jet rate in the Durham algorithm at
NNLO and NNLO+NLL accuracy.
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