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We report on highlights for recent physics results from the CMS ex-
periment. All results are based on proton–proton collision data at

√
s = 8

or 13 TeV collected by the CMS detector. This report contains various in-
teresting topics and their latest results at the CMS: Standard Model (SM)
physics including Quantum Chromodynamics (QCD), Electroweak (EWK),
and top and bottom quarks, Higgs physics, and beyond SM (BSM) searches
such as Supersymmetry (SUSY) and non-SUSY exotic searches.
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1. Introduction

The CMS Collaboration consists of about five thousands members glob-
ally from 200 institutions and 43 countries. During Run 1 (2010–2012), the
CMS detector has successfully operated and, finally, a Higgs boson has been
discovered [1, 2]. After a long shutdown from 2013 to 2014, Run 2 started
at
√
s = 13 TeV and the CMS has collected around 40 fb−1 data in 2015

and 2016, more than initial expectations. More than 570 papers have been
published and submitted using Run 1 and Run 2 datasets. In this paper,
we report on the latest CMS results for various topics based on

√
s = 8 and

13 TeV datasets.

2. SM physics

2.1. QCD

These measurements are important to constrain models and higher order
calculations such as next-to-next-to-leading order (NNLO) and hadroniza-
tion models in order to improve the knowledge of parton distribution func-
tions (PDFs). For example, measurements of the inclusive jet cross section,
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jet multiplicities, jet correlations, to understand the difference between for-
ward and central productions, strong coupling constant (αs), jet production
mechanism in association with EWK bosons and heavy flavour jets (bottom
or charm quark) have been studied recently at the CMS. In such measure-
ments, pileup severely impacts many channels utilising calorimeter-based
objects. Therefore, a lot of efforts are on-going to improve the understand-
ing of the pileup effect at the CMS.

The inclusive jet cross sections are measured using datasets with vari-
ous centre-of-mass energy such as

√
s = 2.76, 8 and 13 TeV. The results

are presented as a function of jet transverse momentum (pT) with different
rapidity (y) and compared to predictions of perturbative QCD at next-to-
leading order (NLO) using various sets of PDFs. Figure 1 shows the results
for the three different datasets. The inclusive jet production cross section,
measured at

√
s = 2.76 TeV (top left), 8 TeV (top right), and 13 TeV (bot-

tom left and right) are shown as a function of jet pT in various rapidity bins
as indicated by different symbols. The statistical (systematic) experimen-
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Fig. 1. Various results of the inclusive jet production cross section [3–5].
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tal uncertainties are indicated by vertical error bars (filled bands). These
measurements are compared to the following NLO QCD predictions: CT10
PDF set (top left), CT10 PDF set corrected for the non-perturbative (NP)
factor for the low pT data and the NP and EWK correction factors for the
high pT data (top right), NLOJet++ based on CT14 PDF set corrected for
the NP and EWK effects (bottom left), and POWHEG+PYTHIA 8 with tune
CUETM1 (bottom right).

The strong coupling constant is extracted from different measurements at
high-momentum scale like up to TeV. Deviation at this scale could appear
due to BSM. Figure 2 shows the running of the αs as a function of the
scale Q, obtained by using the CT10 NLO PDF set. The solid line and
the uncertainty band are obtained by evolving the extracted αs(MZ) values.
The dashed line indicates the evolution of the world average value.
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Fig. 2. Results of αs from various CMS measurements [4].

2.2. EWK

CMS has delivered increasingly precise measurements of single, di-, and
multi-boson production cross sections. Single boson production measure-
ments provide tests of higher order QCD calculations and constraints of
PDFs. In particular, EWK induced asymmetries inW decays have been pre-
cisely measured over a large rapidity intervals allowing for strong constraints
on the PDFs from the LHC. In addition, the Drell–Yan (DY) process is an
important SM benchmark channel allowing for tests of the NNLO pertur-
bative QCD calculations and it is a major background for various BSM
searches in leptonic channels. Figure 3 shows the results of W charge asym-
metry (left) and Drell–Yan differential cross section (right). Comparison of
the asymmetries and differential cross sections to NNLO predictions calcu-
lated using the FEWZ 3.1 interfaced with different PDF sets are also shown.
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Fig. 3. Results of W charge asymmetries at
√
s = 8 TeV (left) [6] and Drell–Yan

differential cross section at
√
s = 13 TeV (right) [7].

Studies of di-boson and multi-boson productions like WW , WZ, ZZ,
di-photon and tri-boson productions are motivated to test EWK theory and
can be important backgrounds to various Higgs and BSM searches. Also the
studies provide indirect sensitivities to BSM-like anomalous triple and quar-
tic gauge couplings (aTGC and aQGC). The following measurements allow
access to rare processes and provide sensitive probes: di-boson production
(aTGC), tri-boson production (aQGC), single boson production via vector
boson fusion (aTGC), and vector boson scattering (aQGC). Figure 4 shows
the summary of many di-boson measurements obtained with the recent CMS
datasets. Results are consistent with theoretical predictions indicated with
grey/yellow bands in the plot.

theoσ / expσProduction Cross Section Ratio:   
0.5 1 1.5 2

CMS PreliminaryJuly 2016

All results at:
http://cern.ch/go/pNj7
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Fig. 4. (Colour on-line) Summary of EWK multi-boson production cross sections [8].



Highlights from CMS 1241

2.3. Top-quark physics

The top quark has been discovered in 1995 at the Tevatron, however,
the properties of the top quark still need further understanding. It is crucial
to improve the precision of inclusive and differential top-quark production
cross-section measurements and it needs to be done in multiple dimensions.
With this improvement, we can constrain PDFs and test new improved
higher order QCD calculations and sophisticated new MC generators on the
top-quark production. Moreover, exploring the coupling of the top quark to
W , Z and H will provide huge sensitivities for BSM, which are analysed in
the framework of the effective field theory (EFT). In addition, we look for
rare production processes, such as four or six top-quark productions.

Precise measurements on the tt̄ production cross sections in leptonic and
hadronic channels are performed. The purpose of these precision measure-
ments is to find deviations which could be due to BSM contributions. So far,
no significant excess beyond the SM predictions is observed. Also precise
understanding of the top-quark mass is connected to the Higgs originality
and BSM. The result of the top-quark mass measurements based on

√
s = 7

and 8 TeV datasets outperforms the precision of the world best combination
performed in 2014. Figure 5 shows the various results of tt̄ production cross
sections (left) and top-quark mass (right) measurements.
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Fig. 5. Summary of tt̄ production cross sections (left) and top-quark mass (right)
measurements [9].
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Measurement of the differential and double-differential cross sections for
tt̄ production at 13 TeV has been performed using the dataset corresponding
to an integrated luminosity of 2.3 fb−1. The tt̄ cross section is measured in
the lepton+jets channel with tt̄ pT, rapidity, invariant mass, and the num-
ber of additional jets in the system. The measurement at the parton level
is dominated by the uncertainties in the parton shower and hadronization
modelling, therefore, the comparisons with various theoretical models are
also performed. The dependence on these theoretical models is reduced for
the particle-level measurement. In general, the results are slightly lower
than predictions, but within the uncertainty compatible with the expecta-
tion. The results are shown in Fig. 6.
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Fig. 6. Differential cross sections at particle level as a function of tt̄ pT (top left),
rapidity (top right), invariant mass (bottom left), and cross sections as a function
of the number of additional jets (bottom right) [10].

3. Higgs physics

Higgs analyses are a main physics program of the CMS experiment. Ob-
viously, the Higgs physics is very sensitive to new physics which can be
achieved by precision measurements or by looking in areas of increased sen-
sitivity.
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With Run 2 data, the Higgs boson has been rediscovered by the ZZ
(decaying to four leptons) and γγ final states. Local significances are 6.2σ
in the ZZ channel and 6.0σ in the γγ channel respectively. These studies
are performed using a dataset corresponding to an integrated luminosity of
12.9 fb−1 at

√
s = 13 TeV. A search for additional resonances in the channels

are studied for a range of masses up to TeV scale and with various widths.
No significant excess beyond the SM prediction is observed. Figure 7 shows
the distributions of the four lepton (left) and di-photon (right) reconstructed
invariant mass after event selection.
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Fig. 7. Distributions of the four-lepton (left) [11] and di-photon (right) [12] recon-
structed invariant mass in the Higgs mass range.

We also present a search for the associated production of an SM Higgs
boson and a tt̄ pair (tt̄H). The dataset corresponds to an integrated lumi-
nosity of 12.9 fb−1. In this study, two leptons of the same charge or at least
three charged leptons are used, and at least one of the leptons should come
from the top quarks. b jets appear in the final state and the Higgs boson
decays intoWW ∗, ZZ∗ and ττ are only considered. The results are shown in
Fig. 8. Left plot shows the comparison between data and SM prediction for
the selected leptons which are in a good agreement. 95% C.L. upper limit on
the signal production cross section is set and the signal strength is 2.0 times
the SM prediction. The right plot in Fig. 8 shows best fit signal strength for
the combined 2015+2016 analysis and flavour categorised results.

In addition, the search for the production of a pair of Higgs bosons in
various final states such as bbbb, bbγγ, bbWW , and bbττ has been performed.
Searches in the channel containing two photons and two bottom quarks, both
resonant and non-resonant production of the Higgs bosons are performed,
using the dataset corresponding to 2.7 fb−1 at

√
s = 13 TeV. In Fig. 9,

expected and observed upper limits are shown. The observed data is in an
agreement with SM predictions.
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4. Exotic searches

4.1. SUSY searches

SUSY provides a more fundamental symmetry from the theoretical point
of view, a solution to the hierarchy problem and it can be a candidate of
dark matter (DM). In the SUSY, SM particles have a SUSY partner from
which it differs in spin by one-half. Production mechanism of the SUSY is
characterised by the strong production of squarks and gluinos, direct produc-
tion of third generation squarks and EWK production. Strong production
of coloured superpartners provides largest cross sections and, therefore, can
be observed first. The generic signature based on this production contains
missing transverse energy (MET), jets and leptons in the final state. The
results for the searches are shown in Fig. 10. The left plot shows limits on
the gluino pairs decaying to four top quarks categorised by the number of
leptons in the final state. The right plot shows the limits in the light quark
final states.
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Fig. 10. Limits on gluino pairs decaying into four top quarks (left) and light quarks
(right) by strong production [15–22].

Third generation squark, such as stop and sbottom is also studied. More
advanced techniques are employed in this search and the event signature
from signal models are similar to SM tt̄ background. The results on the
limit for this search is shown in Fig. 11 (left). EWK SUSY productions
are accessible at higher luminosity because of small couplings. This search
typically does not have a jet associated and it provides a different event sig-
nature compared to other searches. Therefore, searches for the production
can be complementary to searches described earlier, although the cross sec-
tion is lower than for strong production. Many channels are explored and
limit results are shown in Fig. 11 (right).
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Fig. 11. Limits on stop pairs decaying into 2 top quarks (left) and EWK-ino pro-
duction (right) [15–18, 22–24].

4.2. Non-SUSY searches

Searches for a high-mass resonance in di-lepton channel is a key analysis
for various BSM searches based on the leptonic final state. Many theoreti-
cal models predict such a high-mass resonance, for example, the sequential
SM (SSM) and the grand unification theories (GUT) inspired models. This
di-lepton channel provides a very clean event signature at the TeV scale.
Dominant SM backgrounds are DY processes decaying into two leptons.
This search is performed in the di-electron and di-muon mass spectra us-
ing the dataset corresponding to the integrated luminosity of 12.4 fb−1 and
13.0 fb−1. No significant excess is observed from the SM prediction. Fig-
ure 12 shows the di-electron and di-muon invariant mass spectra respectively.
Upper limits are set on the di-lepton invariant mass distribution shown in
Fig. 13. We obtain lower mass limits of 4.0 TeV (SSM) and 3.5 TeV (GUT)
respectively.
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after applying event selection [25].
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A similar search is studied in the di-jet final state using the same dataset.
A low-mass search is based on calorimeter jets and a high-mass search is
based on particle-flow jets. The di-jet invariant mass spectra are smoothly
falling distribution, therefore, they are described by a smooth parametri-
sation. Figure 14 shows the results: di-jet mass spectrum (left) and upper
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limits on the production cross section (right) up to 7.4 TeV with various the-
oretical models such as a scalar quark, string, colorons, excited quarks, etc.
No evidence for such resonances are observed.

A search for the resonant production of high-mass photon pairs are per-
formed with a dataset collected at 2015. Both ATLAS and CMS have
observed non-negligible excesses at around 750 GeV in di-photon channel
with 3.9σ (ATLAS) and 3.4σ (CMS) local significances in a spin-0 sce-
nario [27, 28]. These results have provided a huge impact in the community
on both the theoretical and experimental sides, and many interesting dis-
cussions have been followed to explain such excesses. The same search is
performed with larger dataset corresponding to 12.9 fb−1 collected by the
CMS detector in 2016. The same analysis strategy is applied and two ener-
getic photons in the final state are selected. The results are shown in Fig. 15.
The left plot shows the observed di-photon invariant mass spectrum and the
right plot shows the p-value with background-only hypotheses. No signifi-
cant deviation is observed beyond the SM prediction.
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A similar search for a heavy resonance is performed in the Zγ final state,
where one photon is replaced by a Z boson. In this search, only a Z boson
decaying to a di-electron or di-muon is considered. This search has the same
strategy as the di-photon search discussed earlier, which fits the di-lepton
and a photon invariant mass distribution with the background modelling
above 300 GeV through an unbinned likelihood method. This analysis is
performed using the dataset corresponding to the integrated luminosity of
12.9 fb−1 at

√
s = 13 TeV. Figure 16 shows the fit results of the invariant
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mass spectrum in the di-electron (left) and di-muon (right) channels, respec-
tively, and Fig. 17 shows the combined limit on the production cross section.
No significant excess beyond the SM prediction is observed.
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Fig. 16. Fits of the mZγ distribution in the data for the di-electron (left) and
di-muon (right) channels [30].
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4.3. DM searches

DM is one of the main mysteries in current particle physics. A large
amount of indirect evidence shows the existence of DM but it had not been
directly observed yet. Therefore, many searches have been performed in
last few decades. The DM can be also searched at the LHC. Typically DM
particles are invisible in the detector. However, total transverse momentum
should be conserved in an event. Using this feature, events with visible
particles from the initial state radiation with large MET can be a candidate
of event signature from the DM particles. These are referred to as “mono-X”
searches, where “X” can be a jet, photon, Z/W boson, Higgs boson, etc.

In Run 1, mono-X searches have been mostly done in terms of EFT via
contact interaction, which is valid if the mediator mass is much larger than
momentum transfer. However, this scenario is not valid at a high-energy
transfer, therefore in Run 2, we considered another set of scenarios using
simplified models. In this scenario, higher momentum transfer is possible
and we can define mediator particles explicitly.

Searches for DM particles with a jet (mono-jet) or a photon (mono-
photon) with large MET are performed. In these searches, there is at least
one energetic jet or photon in the final state without any lepton contribution.
The mono-jet search provides the largest cross section but it suffers by huge
SM backgrounds from DY process with the initial-state gluon radiation. The
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to the lower left of the curves are excluded [31].
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mono-photon search has relatively smaller cross section than the mono-jet
search but it provides cleaner event signature in the final state than mono-
jet due to the photon requirement. The analysis is studied using the dataset
corresponding to the integrated luminosity of 12.9 fb−1. Figures 18 and 19
show the results of the mono-jet and mono-photon searches. The left plot
in each figure shows the observed MET distribution after event selection.
The distribution from data is in a good agreement with the SM predictions.
The right plot in each figure shows the upper limits in the mono-jet and
photon searches and provides the strong constraints on the dark matter pair
production cross section through vector and axial–vector mediators. No
significant excess is observed in both channels.
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5. Summary

We discussed a large number of recent results for both SM precision mea-
surements including Higgs physics and BSM searches using dataset collected
by the CMS detector. The datasets considered were taken in 2012, 2015 and
2016. The CMS Collaboration is very active in various physics topics. So far,
there has been no significant evidence beyond SM predictions in any chan-
nel. However, many interesting analyses are being studied and all possible
scenarios are being probed with latest dataset taken in 2016 corresponding
to the integrated luminosity of around 36 fb−1. New results will be presented
in upcoming conferences during this year and exciting observations may be
presented in the new results.
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