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I will discuss the difficulties of putting constraints on the Effective Field
Theories (EFT) at the Large Hadron Collider (LHC). In particular, I will
analyse the generic properties of the 2→ 2 scattering in the presence of the
higher dimensional operators indicating that some of the beyond Standard
Model effects are parametrically smaller than naive expectations.
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1. Introduction

One of the major goals of the future LHC program is to perform a care-
ful analysis of the properties of the Standard Model (SM) particles. The
interactions between SM fields are generically modified in the presence of
the new Beyond Standard Model (BSM) particles. If there is a mass gap
between the SM and the new physics (NP) states, all the effects of the heavy
fields can be parametrized in terms of the higher dimensional operators and
the Lagrangian at the electroweak scale will be given by1

L = LSM + L6 + L8 + · · · , LD =
∑

i c
(D)
i O

(D)
i ,

c
(D)
i ∼ 1

ΛD−4 . (1)

Usually, we expect the dimension-six terms to capture the leading effects of
the new physics corrections to the SM interaction what motivates the trun-
cation of the series in Eq. (1) keeping only the first two terms. The leading
BSM effect in 1/Λ2 expansion will come from the interference between the
SM and the BSM diagrams and will be proportional to ∝ 1/Λ2. The rest
of the proceeding will be dedicated to the studies and constraints on this
interference term.

∗ Presented at the Cracow Epiphany Conference “Particle Theory Meets the First Data
from LHC Run 2”, Kraków, Poland, January 9–12, 2017 and based on [1, 2].

1 I assume the baryon and lepton number conservation.
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2. SM amplitudes

At the LHC, the energy scale of the collision energy is not fixed and one
can exploit the relative energy growth of the BSM non-resonant contribution
in order to put the stronger bound on the Wilson coefficients. In the limit
of E � mw, we can treat the SM particles as massless fields. In this limit,
it is well-known that the SM amplitudes follow the helicity selection rules,
which forces the total helicity of any amplitude in the 2 → 2 processes to
satisfy2

h
(
ASM

4

)
≡
∑
i

hi = 0 , (2)

with the exceptions of the four-fermion amplitudes generated by the scalar
exchange where the total helicity can have the values H = ±2 (see Table I
for the values of the possible helicities).

TABLE I

Helicities of the four-point amplitudes in the SM and BSM.

A4

∣∣h (ASM
4

)∣∣ ∣∣h (ABSM
4

)∣∣
V V V V 0 4,2
V V φφ 0 2
V V ψψ 0 2
V ψψφ 0 2

ψψψψ 2,0 2,0
ψψφφ 0 0
φφφφ 0 0

3. BSM amplitudes

Let us look now at the amplitudes generated by the dimension-six op-
erators. For simplicity, we will start with the massless case corresponding
to the high-energy limit. Since we are interested in the analysis of the
2 → 2 scattering, the discussion becomes clearer in the basis where there
are no bivalent operators and the number of trivalent operators is reduced
to minimum, which happens to be the case in the so-called Warsaw basis
[4]. Another simplification which we can make is to use a supersymmetric
notation for the field strength tensor

Fµνσ
µ
αα̇σ

ν
ββ̇
≡ Fαβ ε̄α̇β̇ + F̄α̇β̇εαβ , (3)

2 We assume all the particles to be incoming.
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where F, (F̄ ) transform as (1,0)((0,1)) representations of the Lorentz group,
projecting the helicity +(−) states of the vector bosons. Generically, we
can characterize [3] any amplitude in terms of the holomorphic and anti-
holomorphic weights

w(A) = n(A)− h(A) , w̄(A) = n(A) + h(A) , (4)

where n(A) is the number of legs and h(A) is the total helicity. Then, we
can relate the operator with the helicity of the amplitude it generates [3] by
generalizing Eq. (4)

w(O) = min
A
{w(A)} , w̄(O) = min

A
{w̄(A)} , (5)

where the minimization is taken over all the amplitudes with only one opera-
tor insertion. In practice, one can show the weight is fixed by the amplitude
with the smallest number of the legs [3]. Then, for the dimension-six op-
erators, the weights are given in Table II, and we can trivially see that the
helicity of the amplitude generated by the operator O will be constrained

w̄(O)− n ≤ h
(
AOn
)
≤ n− w(O) . (6)

Then by inspecting the values of the possible helicities of the BSM and
SM amplitudes, we can conclude that for the 2→ 2 processes, the interfer-
ence term will always vanish if there is at least one transverse vector boson.

TABLE II

Holomorphic and anti-holmorphic weights for the dimension-six operators. The
minimal number of legs and the corresponding helicity is also indicated. The last
column shows an estimate for the Wilson coefficient based on the “one scale one
coupling” power counting.

Oi nmin hmin (w, w̄) ci

F 3 3 3 (0,6) g∗/Λ
2

F 2φ2, Fψ2φ, ψ4 4 2 (2,6) g2∗/Λ
2

ψ2ψ̄2, ψψ̄φ2D, φ4D2 4 0 (4,4) g2∗/Λ
2

ψ2φ3 5 1 (4,6) g3∗/Λ
2

φ6 6 0 (6,6) g4∗/Λ
2

4. Phenomenological implications

So far, we have been considering the 2 → 2 scattering in the very high
energy (E � mw) limit. However, very similar methods can be used to
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classify non-zero mass effects. In the high-energy limit, the corrections to
the results in Table I should be controlled by the small parameters

εV ≡
mV

E
, εψ ≡

mψ

E
. (7)

However, every extra power of εi corresponds to the Higgs vev insertion,
see the diagrams in Fig. 1. But the Higgs vev flips the total fermion and

V

Fig. 1. Helicity flip due to the Higgs vev.

the vector boson helicity by factor of ±1. Thus, we can predict the leading
energy behaviour for all the helicity amplitudes for the SM and BSM, see
Table III.

TABLE III

Scaling with energy for various SM and BSM amplitudes.

Channel SM BSM6/E
2

+ + + + ε4V ε0V
+ + + − ε2V ε0V
+ + − − ε0V ε2V

+ 1
2 −

1
2 + + ε2V ε0V

+ 1
2 −

1
2 +− ε0V ε2V

+ 1
2 −

1
2 0 + ε1V ε1V

+ 1
2 −

1
2 0 0 ε0V ε0V

0 + + + ε3V ε1V
0 + +− ε1V ε1V
0 0 + + ε2V ε0V
0 0 +− ε0V ε2V
0 0 0 + ε1V ε1V
0 0 0 0 ε0V ε0V

Now, after we know the scaling of all the amplitudes with energy, we can
proceed to the discussion of the phenomenological implications. One of the
most important questions of any EFT analysis is the region of the validity,
i.e. where the effects of the dimension-eight operators can be safely ignored.
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To make the discussion more precise, we will assume the “one scale one
coupling” power counting for all the Wilson coefficients of the dimension-six
operators (see Table II). Let us consider the scattering of the longitudinal
vector bosons. Then, the differential cross section can be parametrized as:

σL ∼
g4SM
E2

1 +
g2∗
g2SM

E2

Λ2︸ ︷︷ ︸
BSM6×SM

+
g4∗
g4SM

E4

Λ4︸ ︷︷ ︸
BSM2

6

+
g2∗
g2SM

E4

Λ4︸ ︷︷ ︸
BSM8×SM

+ . . .

 , (8)

where we have explicitly indicated all the various contributions to the cross
section: interference with dimension-six operators, dimension-six operators
squared, interference with dimension-eight, etc. The results are presented
in Fig. 2, where we have explicitly indicated the origins of the leading and
subleading contributions. We can clearly see that the EFT analysis with
the dimension-six operators only is always consistent and the contribution
of the dimension-eight operators is subleading till the scale of the cut-off,
where any EFT description becomes invalid anyway. Now, let us consider
the scattering of the two transverse vector bosons:

σT ∼
g4SM
E2

1 +

BSM6×SM︷ ︸︸ ︷
g∗
gSM

m2
w

Λ2
+

BSM2
6︷ ︸︸ ︷

g2∗
g2SM

E4

Λ4
+

BSM8×SM︷ ︸︸ ︷
g2∗
g2SM

E4

Λ4
+

BSM2
8︷ ︸︸ ︷

g4∗
g4SM

E8

Λ8
+ . . .

 . (9)
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Fig. 2. EFT validity range: origin of the leading and subleading contributions to
the cross sections are indicated.
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In this case, the interference term has an additional suppression ∼ m2
W /E

2

compared to the previous example. This makes the EFT truncation at
the level of the dimension-six operators valid only in the low energy and
small coupling limit, once we are off this region, the contributions from the
dimension-eight operators become essential.

5. Outlook

We have analysed the generic properties of the amplitudes in SM and
its extensions by the dimension-six operators. We have shown that the in-
terference between the SM and the BSM amplitudes, in the presence of
the transverse vector bosons, is always suppressed compared to the naive
expectations. This leads to the additional difficulties in measuring the Wil-
son coefficients of the corresponding operators at the LHC. At the same
time, our results indicate that the 2 → 3 processes do not suffer from the
above-mentioned suppression and can be used [2, 5] as an additional mea-
surement which can become competitive and complementary to the 2 → 2
processes [5].
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