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It is argued that the hollowness effect (depletion in the absorptive part
of the scattering cross section at small values of the impact parameter) in
the proton–proton scattering at the LHC energies finds its origin in the
quantum nature of the process, resulting in large values of the real part
of the eikonal phase. The effect cannot be reconciled with an incoherent
superposition of the absorption from the proton constituents, thus suggests
the change of this basic paradigm of high-energy scattering.
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In this talk, we discuss the significance of the recent pp scattering results
from the Large Hadron Collider for our understanding of the underlying
physical processes in highest-energy collisions. In particular, we argue that
the hollowness in the inelastic cross section treated as a function of the
impact parameter b, i.e., its depletion at low b, must necessarily originate
from quantum coherence, precluding a probabilistic folding interpretation.
More details of our analysis can be found in [1, 2], where we also analyze
the effect in 3 dimensions via the optical potential interpretation.
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The TOTEM [3] and ATLAS (ALFA) [4] collaborations have measured
the differential elastic cross section for the pp collisions at

√
s = 7 TeV,

later repeated for
√
s = 8 TeV [5, 6]. When the data are used to obtain the

inelastic cross section in the impact-parameter representation, a striking fea-
ture appears: there is more inelasticity when the two protons are separated
by about half a fermi in the traverse direction than for the head-on colli-
sions. We term this phenomenon hollowness. This unusual feature has been
brought up and interpreted by other authors [7–15]. A model realization of
the effect was implemented via hot-spots in [16].

We use the parametrization of the pp scattering data [17] based on the
Barger–Phillips model (modified BP2) [18] of the form of

A(s, t) ≡ f(s, t)

p
=
∑
n

cn(s)Fn(t)s
αn(t) =

i
√
Ae

Bt
2(

1− t
t0

)4 + i
√
Ce

Dt
2
+iφ , (1)

where f(s, t) is the quantum mechanical scattering amplitude. The modified
BP2 model deals with the t dependence and the s-dependent parameters are
fitted separately to the differential elastic pp cross sections at

√
s = 23.4,

30.5, 44.6, 52.8, 62.0, and 7000 GeV. A typical quality of the fit, from the
ISR [19] at

√
s = 23.4 GeV to the LHC at

√
s = 7 TeV, can be appreciated

from Fig. 1 (a). These fits are not sensitive to the phase of the scattering
amplitude.
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Fig. 1. (a) The data for the ISR energy of
√
s = 23.4 GeV [19] and the LHC energy

of
√
s = 7 TeV [3] with overlaid fits according to Eq. (1). (b) Plot of the integrand

of Eq. (6) showing that the range of the experimental data in q is sufficient to carry
out the Fourier–Bessel transform for the values of b of interest.
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The ρ(s) parameter is defined as the ratio of the real-to-imaginary parts
of the amplitude at t = 0

ρ(s) =
ReA(s, 0)
ImA(s, 0)

. (2)

This parameter has been recently determined for the LHC energy of
√
s =

8 TeV in [20]. To agree with this experimental constraint, we replace the
parametrization of the scattering amplitude of Eq. (1) with

A(s, t)→ i+ ρ(s)√
1 + ρ(s)2

|A(s, t)| . (3)

This procedure assumes a t-independent ratio of the real-to-imaginary parts
of the scattering amplitude for all t-values, which is the simplest choice.
More general prescriptions have been analyzed in detail in Ref. [20]. Our
results presented below are similar if we take, e.g., the Bailly et al. [21]
parametrization ρ(s, t) = ρ0(s)/(1 − t/t0(s)), where t0(s) is the position of
the diffractive minimum. However, admittedly, there is some dependence on
the choice of the model of ρ(s, t). Moreover, the problem is linked to the
separation of the Coulomb and strong amplitudes. The issue is crucial for
the proper extraction of the physical results and the ambiguity has a long
history since the early diagrammatic work of West and Yennie [22], which
is consistent with the eikonal approximation [23, 24] but becomes sensitive
to internal structure from electromagnetic information such as form factors
(see, e.g., [25] and references therein).

Our prescription (3) maintains by construction the quality of the fits
shown in Fig. 1, but also the experimental values for ρ(s) are reproduced,
which would not be the case if Eq. (1) were used. Basic physical quantities
stemming from our method are listed in Table I, with a good agreement with
the data supporting the used parametrization.

We now recall the relevant formulas from scattering theory: The pp
elastic differential cross section is given by

dσel
dt

=
π

p2
dσel
dΩ

=
π

p2
|f(s, t)|2 = π|A(s, t)|2 , (4)

with p =
√
s/4−M2 the CM momentum and the partial wave expansion

of the scattering amplitude (we neglect spin effects) equal to

f(s, t) =

∞∑
l=0

(2l + 1)fl(p)Pl(cos θ) . (5)
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TABLE I

Basic scattering observables for several collision energies obtained from Eq. (3),
compared to experimental values (lower rows). B is the slope parameter of the
differential elastic cross section.

√
s [GeV] σel [mb] σin [mb] σT [mb] B

[
GeV−2

]
ρ

23.4 6.6 31.2 37.7 11.6 0.00
[19] 6.7(1) 32.2(1) 38.9(2) 11.8(3) 0.02(5)

200 10.0 40.9 50.9 14.4 0.13
[26, 27] 54(4) 16.3(25)

7000 25.3 73.5 98.8 20.5 0.140
[3] 25.4(11) 73.2(13) 98.6(22) 19.9(3) 0.145(100)

The total cross section is given by the optical theorem, σT = 4π Im f(s, 0)/p,
and Coulomb effects are negligible at |t| > 8πα/σT, where α ' 1/137 is the
QED fine structure constant and σT is the total strong scattering cross sec-
tion. For pa � 1, with a denoting the interaction range, one can use the
eikonal approximation with bp = l + 1/2 + O(s−1), where b is the impact
parameter. The b representation of the scattering amplitude can be straight-
forwardly obtained from a Fourier–Bessel transform of f(s, t), known from
the data parametrization. Explicitly,

2ph(b, s) = i
[
1−eiχ(b)

]
= 2pfl(p) +O

(
s−1
)
= 2

∞∫
0

q d qJ0(bq)f
(
s,−q2

)
.

(6)
In Fig. 1 (b), we demonstrate that the range of the TOTEM data in q is
sufficient to carry out this transform to a satisfactory accuracy needed in
our analysis.

The standard formulas for the total, elastic, and inelastic cross sections
(in our analysis, we treat all the components to the inelastic scattering
jointly, not discriminating, e.g., the diffractive components) in the b rep-
resentation can be parameterized with the eikonal phase χ(b) and have the
form of [28]

σT =
4π

p
Im f(s, 0) = 4p

∫
d2b Imh

(
~b, s
)
= 2

∫
d2b

[
1− Re eiχ(b)

]
, (7)

σel =

∫
dΩ|f(s, t)|2 = 4p2

∫
d2b|h

(
~b, s
)
|2 =

∫
d2b
∣∣1− eiχ(b)∣∣2 , (8)

σin ≡ σT − σel =
∫

d2bσin(b) =

∫
d2b

[
1− e−2Imχ(b)

]
, (9)
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with the integrands σin(b), σel(b) and σT(b) being dimensionless quantities
that can be interpreted as the corresponding b-dependent relative number
of collisions. For instance, accordingly to Eq. (9), the inelasticity profile is
defined as

σin(b) = 4p Imh(b, s)− 4p2|h(b, s)|2 . (10)

While unitarity implies σin(b) > 0, one also has σin(b) ≤ 2k(b, s)− k(b, s)2,
with k(b, s) ≡ 2p Imh(b, s), and hence one also has the upper bound
σin(b) ≤ 1.

Now, we come to our results. In Fig. 2, we present the real and imaginary
parts of the eikonal amplitude 2ph(b) for several collision energies. The real
parts are smaller from the corresponding imaginary parts, as their ratio is
given by the (constant) ρ parameter. The important observation here is that
the imaginary parts go above 1 near the origin for the LHC collision energies.
We will come back to this issue shortly.
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Fig. 2. Real (lower curves) and imaginary (upper curves) parts of the eikonal scat-
tering amplitude 2ph(b) for several collision energies. We note that for the LHC
energies at the origin, 2p Imh(0) > 1.

In Fig. 3, we collect the results for the impact-parameter representations
of the total, elastic, and inelastic cross sections, as well as for the edge
function [29, 30], defined as σin(b) − σel(b). The most important feature,
visible from Fig. 3 and more accurately form the close-up of Fig. 4, is the
hollowness: the inelastic cross section develops a minimum at b = 0 at the
LHC collision energies.
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Fig. 3. The total (a), elastic (b), and inelastic (c) cross section, as well as the edge
function, plotted as functions of the impact parameter at various collision energies.
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Fig. 4. A close-up of Fig. 3 (c).
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To better understand these results, one should resort to the formulas
expressed with the eikonal phase, plotted in Fig. 5. We have

2p Imh(b) = 1− e−Imχ(b) cosReχ(b) ,
2pReh(b) = e−Imχ(b) sinReχ(b) ,

σT(b) = 2− 2e−Imχ(b) cosReχ(b) ,

σel(b) = 1 + e−2Imχ(b) − 2e−Imχ(b) cosReχ(b) ,

σin(b) = 1− e−2Imχ(b) ,

σel(b)− σin(b) = 2e−Imχ(b)
[
cosReχ(b)− e−Imχ(b)

]
. (11)
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Fig. 5. Imaginary (a) and real (b) part of the eikonal scattering phase, plotted as
functions of the impact parameter for several collision energies. We note that at
the LHC energies, Reχ(b = 0) goes above π/2.

We note several facts following from the above relations:

1. Going of 2p Imh(b) above 1 and σT(b) above 2 are caused by Reχ(b) >
π/2, where cosReχ(b) < 0 (cf. Figs. 2, 3 (a), and 5 (b)).

2. In addition, if χ(b) > π/2, the edge function is negative and σel(b) > 1.

3. The departure of 2p Imh(b) from 1 is of similar order as 2pReh(b),
with both suppressed with e−Imχ(b).

We see that this is the real part of the eikonal phase which controls the
behavior related to hollowness.

One may give a simple criterion for σin(b) to develop a minimum at b = 0.
From Eqs. (10) and (3), we get

dσin(b)

db2
= 2p

d Imh(b)

db2
[
1−

(
1 + ρ2

)
2p Imh(b)

]
, (12)
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which is negative at the origin if

2p Imh(0) >
1

1 + ρ2
∼ 1 . (13)

Since at the LHC ρ = 0.14, the departure of 1/(1+ρ2) from 1 is at the level
of 2%.

We also find from Eq. (11) that

dσin(b)

db2
= 2e−2 Imχ(b)

d Imχ(b)

db2
, (14)

thus the appearance of the dip at the origin in σin(b) is associated with the
dip in Imχ(b). This is manifest between Fig. 4 and Fig. 5 (a).

Dremin [8–10] proposed a simple Gaussian model of the amplitude which
one may adapt to the presence of the real part of the amplitude (which
is crucial for maintaining unitarity with the hollowness effect). One can
parametrize the amplitude at low values of b (which is the numerically rele-
vant region) as

Im(2p h(p)) = Ae−
2b2

2B , A =
4σel

(1 + ρ2)σtot
, B =

(
1 + ρ2

)
σ2tot

16πσel
.

(15)
The curvature of the inelasticity profile at the origin is

1

2

d2nin(b)

db2

∣∣∣∣
b=0

=
64πσ2el(4σel − σtot)

(ρ2 + 1)2 σ4tot
. (16)

We note it changes the sign when σel = 1
4σtot, with the value at the origin

σin(0) =
8σel

(1 + ρ2)σtot

(
1− 2

σel
σtot

)
. (17)

As predicted by Dremin, the hollowness effect emerges when σel >
1
4σtot,

which is the case of the LHC collision energies. We illustrate relation (17)
in Fig. 6.

The final point, very important from the conceptual point of view and for
the understanding of the effect, is the impossibility of hollowness to emerge
from incoherent folding of inelasticities of collisions of the protons’ partonic
constituents. In many models incoherent superposition is assumed, i.e., the
inelasticity of the pp process is obtained from the folding formula shown
below. These ideas have been implemented in microscopic models based on
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Fig. 6. Illustration of Eq. (17). The solid line corresponds to the experimental
values of the ratio of the elastic to total pp cross section. Values of σel/σT > 1/4

correspond to hollowness in the Gaussian model.

intuitive geometric interpretation [30–35]. Folding involves

σin(b)∝
∫

d2b1d
2b2ρ

(
~b1 +~b/2

)
w
(
~b1 −~b2

)
ρ
(
~b2 −~b/2

)
=

∫
d3b1d

3b2ρ
(
~b1
)
w
(
~b1 −~b2

)
ρ
(
~b2
)

−1

2

∫
d3b1d

3b2

[
~b · ∇ρ

(
~b1
)]
w
(
~b1 −~b2

) [
~b · ∇ρ

(
~b2
)]

+ . . . , (18)

where w(~b1 − ~b2) is a positive-definite kernel (folding models usually take
w(~b1−~b2) ∝ δ(~b1−~b2)) and ρ(~b) describes the (possibly correlated) transverse
distribution of components in the proton. By passing to the Fourier space, it
is simple to show that σin(b) = α2−β2b2+ . . . , with real constants α and β,
therefore σin(b) has necessarily a local maximum at b = 0, in contrast to
the phenomenological hollowness result at the LHC energies. An analogous
argument holds for the 3D-hollowness unveiled in our work [1, 2], which
takes place already at lower energies.

In conclusion, we stress that the hollowness effect in pp scattering at the
LHC energies has necessarily a quantum origin. As just shown, it cannot
be obtained by an incoherent folding of inelasticities of collisions of par-
tonic constituents. Moreover, we have demonstrated that the real part of
the scattering amplitude plays a crucial role in generating hollowness: the
effect appears when the real part of the eikonal phase becomes larger than
π/2. Per se, there is nothing unusual in that fact. If coherence occurs,
the phases of amplitudes from the constituents may add up (as is the case,
e.g., in the Glauber model [36]) and at some point, the value of π/2 may



936 W. Broniowski, E. Ruiz Arriola

be crossed. A microscopic realization of this quantum mechanism remains,
however, a challenge. Finally, we note that in [1, 2], we have presented
a three-dimensional interpretation of the effect, which offers an even more
pronounced hollowness feature.
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