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In this work, the process of elastic hadron scattering is discussed. In
particular, scattering amplitudes for the various Pomeron models are com-
pared. In addition, differential elastic cross section as a function of the scat-
tered proton transverse momentum for unpolarised and polarised protons is
presented. Finally, an implementation of the elastic scattering amplitudes
into the GenEx Monte Carlo generator is discussed.
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1. Introduction

Elastic scattering is the simplest process that one can imagine: in the
final state, all particles are identical to the initial-state ones. This implies
that the exchanged object must be a colour singlet and, in particular, that
there is no quantum number transfer. In the case of the proton–proton elas-
tic scattering, pp→ pp, see Fig. 1, such an exchange can be mediated via a
photon (electromagnetic interaction) or a Pomeron/Reggeon (strong force).

Elastic scattering is a large fraction of total cross section. However,
despite many years of research, there are still open questions concerning its
nature.

There is a strong connection between the elastic scattering amplitude
and the total cross section, which is described by the optical theorem. The
dependence of the total cross section (σtot) on the forward scattering ampli-
tude (f(θ = 0), where θ is the scattering angle) is given by: σtot = 4π

k Imf(0),
where k is the wave vector. This fact is widely used in order to precisely
determine the total cross section [1].
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Fig. 1. Diagram of the elastic scattering: a colour singlet (here a Pomeron) is ex-
changed between two protons: p(p1, s1) and p(p2, s2) which are scattered: p(p3, s3)
and p(p4, s4).

2. Spin structure of the Pomeron

The differential cross section for unpolarized pp elastic scattering is de-
scribed by a formula

dσ(pp→ pp)

dt
=

1

16πs
(
s− 4m2

p

) 1
4

∑
s1,...,s4

|〈2s3, 2s4| T |2s1, 2s2〉|2 ,

where 〈2s3, 2s4|T |2s1, 2s2〉 are the helicity amplitudes with a certain spin
orientation of each particle (si).

Contrary to the photons, the nature of Pomerons is not well-known —
there are still many open questions, for example: the Pomeron spin struc-
ture.

In the approach of Donnachie and Landshoff, a Pomeron is viewed as a
vector object [2]. However, as it was discussed in [3], such an approach gives
a negative cross-section value. It is also possible to define it as a scalar or
a rank-2 tensor object [3]. As it was shown in [4], the STAR data [5] prefer
the tensor over the scalar Pomeron model.

2.1. Calculation of the elastic scattering amplitudes

There are 16 helicity amplitudes describing pp elastic scattering for every
combination of spins of incoming and outgoing protons. However, only five
of them are independent

ψ1(s, t) = 〈++ |T |++〉 ,
ψ2(s, t) = 〈++ |T | − −〉 ,
ψ3(s, t) = 〈+− |T |+−〉 ,
ψ4(s, t) = 〈+− |T | −+〉 ,
ψ5(s, t) = 〈++ |T |+−〉 .
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ψ1 and ψ3 are the amplitudes describing no spin flip, ψ5 — single flip, ψ2

and ψ4 — double flip. These amplitudes can be calculated using a vertex
(Γ ) and a propagator (∆) functions, specific for each Pomeron spin (cf. [4]):

— scalar Pomeron:

— vertex: iΓ (PSpp)(p′, p) = −i3βPNNM0F1

[
(p′ − p)2

]
,

— propagator: i∆(PS)(s, t) = s
2m2

pM
2
0
(−isα′P)

αP(t)−1,

— vector Pomeron:

— vertex: iΓ (PVpp)
µ (p′, p) = −i3βPNNM0F1

[
(p′ − p)2

]
γµ,

— propagator: i∆(PV)
µν (s, t) = 1

M2
0
gµν (−isα′P)

αP(t)−1,

— tensor Pomeron:

— vertex: iΓ (PTpp)
µν (p′, p) = −i3βPNNF1

[
(p′ − p)2

]{
1
2 [γµ(p

′ + p)ν

+γν (p
′ + p)µ]−

1
4gµν

(
/p′ + /p

)}
,

— propagator:
i∆

(PT)
µν,κλ(s, t) =

1
4s

(
gµκgνλ + gµλgνκ − 1

2gµνgκλ
)
(−isα′P)

αP(t)−1.

In these formulas, βPNN is a coupling constant describing the Pomeron–
nucleon interaction, F1[(p

′−p)2] is a form factor, γν , γµ are gamma matrices,
/p = γµpµ is a four momentum in a Feynman slash notation, α′P = 0.25GeV−2
is the Pomeron slope and αP(t) = 1.0808 + α′P is the Pomeron trajectory.

The Pomeron spin structure is visible in its propagator formula. For the
tensor Pomeron, it depends on four variables (µ, ν, κ, λ), in contrast to the
vector (two variables) and the scalar (no variables) Pomeron models.

The above formulas have been implemented as a set of C++ classes
for future implementation in the MC generator. Such approach allows the
calculations of more complicated processes to be made in the future. The
outcome of an exemplary calculation is shown in Fig. 2, where the absolute
value of the imaginary and real part of ψ2 amplitude is plotted for all three
discussed Pomeron models.

As it can be seen in these figures, the magnitude of the ψ2 amplitude
(real and imaginary part) is similar in those of the tensor and vector models,
whereas the scalar model predictions are much higher. A dip located close
to t = −0.3 GeV2 and t = −4.3 GeV2 for the real and imaginary part of
ψ2 amplitude is due to a change of the sign of the amplitude. The results
generated by C++ code were compared with approximate analytic formulas
presented in [4]. All results are consistent with each other.
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Fig. 2. Absolute value of real (left) and imaginary (right) part of ψ2 amplitude.
Solid (dashed, dotted) line represent scalar (vector, tensor) Pomeron model.

Since a single amplitude differs a lot between the models, it is interesting
to see a cross section integrated over all spin combinations. Results of such
calculations are shown in Fig. 3. For proton–proton collision, the tensor
(dotted line) and vector (dashed line) Pomeron gives exactly the same re-
sults. For small momentum transfers, also the scalar model predictions are
comparable. They start to differ (up to a factor of 10) with the increasing
value of the four-momentum transfer.

Fig. 3. Differential cross section given by scalar, vector and tensor Pomeron.

3. Implementation in the GenEx Monte Carlo generator

Monte Carlo generators are widely used tools in high-energy physics
since they provide an essential input helping to understand detector ef-
fects. In consequence, they provide a way of comparison between the theory
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and experimental data. Elastic scattering process is present in many re-
cent HEP MC generators. Based on the formulas described in the previous
section, the process of elastic scattering has been added to the GenEx MC
generator [6].

As an example, a distribution of the transverse momentum of the final
state proton obtained assuming various Pomeron models is shown in Fig. 4.
The left plot shows the distribution for the unpolarised protons (sum of all
amplitudes), whereas the right plot illustrates the polarised (i.e. sum of ψ1,
ψ2 and ψ5) amplitudes.

Fig. 4. Elastic cross section as a function of scattered proton transverse momentum
(pT) for unpolarised (sum of all amplitudes) and polarised beams.

For both unpolarised and polarised protons, the vector and tensor models
are in agreement, whereas the scalar model gives slightly different values for
larger transverse momentum values.

4. Summary and outlook

The helicity amplitudes for various Pomeron models for the elastic scat-
tering processes were analysed. It was shown that the differential cross
section for the vector and tensor model in proton–proton collisions were in
a good agreement, but scalar model differs in region of larger transverse
momentum transfer. This difference is also visible in the corresponding,
generated MC sample.

An analysis of this simplest possible process gives a good starting point
for the future studies of exclusive processes. The plans include further de-
velopments of the GenEx generator including the non-resonant and resonant
soft exclusive production.
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