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Effects of the standard thermodynamic fluctuations on the predictions
of the Gaździcki–Gorenstein model of particle production in high-energy
heavy-ions collisions are evaluated. At low numbers of participating nucle-
ons, the corrections due to these fluctuations are found to be very signifi-
cant.
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1. Introduction

Gaździcki and Gorenstein [1] proposed a description of the fluid produced
in high-energy heavy-ion collisions, where the fluid contains at low energies
only hadrons (W -phase) and at high energies only partons (Q-phase). In
the following, both hadrons and partons will be referred to as particles.
The two phases can coexist. For plausible values of the parameters of the
model, there is a first order phase transition, similar to the familiar water–
vapour transition, at collision energies per pair of colliding nucleons

√
sNN ≈

9 GeV. At the low-energy end of the transition region, the model predicts a
maximum in the ratio of the number of produced K+ mesons to the number
of produced π+ mesons. This maximum has indeed been found. For a
compilation of the experimental data, see [2].

In the original approach of Gaździcki and Gorenstein, the thermody-
namic limit was used [3]. Then, approximate strangeness conservation fol-
lows from assuming the same chemical potentials for the corresponding
strange and anti-strange particles. In the model from [1], the chemical poten-
tials of all the particles are zero. In a subsequent paper [4], Poberezhnyuk,
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Gaździcki and Gorenstein imposed exact strangeness conservation. This
goes beyond the thermodynamic limit and yields some unfamiliar results.
E.g., when going from the W -phase to the Q-phase the temperature slightly
decreases with increasing energy.

In the thermodynamic limit, at given values of the total volume, energy
and all the chemical potentials, the fraction λV of the total volume V occu-
pied by phase Q is unambiguously defined and corresponds to the maximum
of entropy. Since by definition

0 ≤ λ ≤ 1 , (1)

this maximum can be at λ = 0 (W -phase), λ = 1 (Q-phase) or somewhere
in between (coexistence of the two phases).

In the standard theory of thermodynamic fluctuations (Einstein 1907),
one assumes that the parameter λ has the probability distribution

ρ(λ) = CeS(λ) , (2)

where the dependence on the parameters other than λ has not been written
explicitly. The thermodynamic limit corresponds to the replacement of this
distribution by a Dirac δ-distribution. In the present paper, we consider
the effects, on the predictions of the model, of using formula (2) with the
known entropy S(λ), instead of the δ-distribution. Then all the values of
0 ≤ λ ≤ 1 are possible at any energy though, at each energy, some of them
have very small probabilities. In other words, we will discuss the effects of
the thermodynamical fluctuations of the volume fraction λ.

A slightly simplified version of the model from [1] will be used. This
makes it possible to write many of the results in simple analytic forms,
while it does not change the qualitative conclusions.

2. The model

In the model from [1], the overall collision energy fixes the energy of the
fluid

E = Apη (
√
sNN − 2m) (3)

and its volume

V =
Ap

ρ0

2m
√
sNN

. (4)

In these formulae, m is the nucleon mass,

ρ0 = 0.16 fm−3 (5)
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is the rest frame nuclear density,

η = 0.67 (6)

is a phenomenological factor correcting for the energy, in excess of 2m, taken
away by the leading particles, which should not be included into the energy
of the fluid. Ap is the number of interacting nucleons from one nucleus.
For simplicity, it has been assumed that Ap is the same for each of the two
colliding nuclei.

The fluid is an ideal gas, except that in the Q-phase, a term λV B, where
B is the bag constant, is added to the energy. The (anti)strange particles
in the Q-phase have mass 175 MeV and in the W phase 500 MeV. All the
remaining particles are massless. In the somewhat simplified version of the
model described in [4], Boltzmann statistics is used for all the (anti)strange
particles and Bose–Einstein statistics for all the non-strange ones.

Since our purpose is to demonstrate the importance of the thermody-
namic fluctuations of the volume fraction λ, and not a quantitative compar-
ison with the data, we choose the simplest version of the model, with all
the particles massless and subject to Boltzmann statistics. The assumption
that all the particles are massless has been used in [1] for illustrative pur-
poses. The replacement of quantum statistics by the Boltzmann one (for
the (anti)strange particles) is one of the differences between the approaches
in [4] and in [1].

For the effective numbers of states for non-strange (ns) and (anti)strange
(s) particles at given momentum, we choose

gWns = 17.31 ; gW s = 8.01 ; gQns = 43.29 ; gQs = 10.78 . (7)

These numbers were obtained from the corresponding numbers given in [4]
by multiplying the numbers for the non-strange particles by π4

90 in order to
correct for the change of statistics, and by multiplying the numbers for the
(anti)strange particles by factors which compensate, at temperature T =
200 MeV, the effects of the changes of mass in the contributions to the
energies of the two phases. Analogous corrections were used in [4] to compare
their numbers of states with those from [1].

These assumptions imply that the grand canonical potential is

Ω = −g(λ)Tze−βµ + λBV . (8)

In this formula, β is the inverse temperature 1
T , µ is the chemical potential,

assumed to be the same for all the particles,

g(λ) = gW + λ(gQ − gW ) (9)
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with gW = gWns + gW s and gQ = gQns + gQs, and the single particle phase
space

z =
V T 3

π2
. (10)

Multiplying the potential Ω by β and differentiating the result with
respect to β, at constant V and µ ≡ 0, we obtain the energy of the fluid

E = 3Tg(λ)z + λBV . (11)

Introducing the dimensionless energy density

ε̄ =
E

BV
, (12)

using (10) and (11), we obtain

z =
V B

3
4

√
π

(
ε̄− λ
3g(λ)

) 3
4

. (13)

The pressure is

p = −Ω
V

=
B

3
(ε̄− 4λ) (14)

and the temperature

T =

(
π2B(ε̄− λ)

3g(λ)

) 1
4

. (15)

Since the chemical potentials vanish, the entropy

S =
E −Ω
T

= 4g(λ)z . (16)

In order to calculate the average numbers of non-strange and (anti)strange
particles, it is necessary to split the potential Ω into the two corresponding
contributions. This is done by making the replacement

g(λ) = gns(λ) + gs(λ) , (17)

where
gi(λ) = gWi + (gQi − gWi)λ , i = ns, s . (18)

Differentiating the two terms in the potential Ω with respect to µ, putting
µ = 0 and changing signs, one finds

Ni = gi(λ)z , i = ns, s (19)
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and for the ratio of the average numbers of (anti)strange and non-strange
particles

Ns

Nns
=

gs(λ)

gns(λ)
. (20)

Outside the coexistence region, these ratios are constant due to the assump-
tion that all the particles have equal masses. This could be easily corrected
by giving suitable masses to the (anti)strange particles [1]. We chose the
simpler version of the model, because it is more transparent, while for our
discussion it is good enough.

3. Thermodynamic limit

In the thermodynamic limit, λ maximizes entropy (16) under condition
(1). Equating to zero the derivative of the entropy with respect to λ, we get

λ = 1
4(ε̄− 3ḡ) , (21)

where
ḡ =

gW
gQ − gW

. (22)

According to condition (1), this relation can be used only for

3ḡ ≤ ε̄ ≤ 3ḡ + 4 . (23)

When ε̄ < 3ḡ, the maximum entropy corresponds to λ = 0, i.e. the system
is in the W -phase. When ε̄ > 3ḡ + 4, the maximum entropy corresponds to
λ = 1 and the system is in the Q-phase. In order to find the corresponding
limits for the energy

√
sNN , it is necessary to know the bag constant B.

In range (23) relation (15) yields

T =

(
π2B

gQ − gW

) 1
4

. (24)

Thus, in the coexistence region, the temperature is constant. Assuming [1]
that there it equals 200 MeV, one finds

B = 607 MeV fm−3 . (25)

The energy range of the coexistence region is, therefore,

6.33 GeV ≤
√
sNN ≤ 9.40 GeV . (26)

Substituting solution (21) for λ into formula (14), we get for the pressure
in the transition region

p = ḡB = 534 MeV fm−3 . (27)

Thus, also the pressure is constant there.
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As seen from (20), in the transition region, the ratio of the average
number of (anti)strange particles to the average number of the non-strange
particles drops from

gW s

gWns
= 0.46 (28)

at λ = 0 i.e.
√
sNN = 6.33 GeV, to

gQs

gQns
= 0.25 (29)

at λ = 1 i.e.
√
sNN = 9.40 GeV. This is the high-energy side of the “horn”

observed in experiment.

4. Thermodynamic fluctuations

Let us consider now the effects of the thermodynamic fluctuations in the
volume fraction λ on the average values of the parameters of the system.
The corrected averages are obtained by averaging the λ-dependent values
obtained in Section 2 over distribution (2) with the entropy given by (16).
According to the general rules of statistical thermodynamics, at high Ap the
thermodynamic results should be reproduced. Thus, the interesting ques-
tions are: what happens at low values of Ap and how fast the thermodynamic
limit is reached.

It is instructive to begin with the parameter λ. The results are shown in
Fig. 1. The broken line (green on-line) corresponds to the thermodynamic
limit, the line close to it (blue on-line) has been calculated putting Ap = 10
and the remaining line (red on-line) corresponds to Ap = 1, which is the
case discussed in [4].

It is seen that at Ap = 1, the region where the two phases can coexist
is greatly extended, as compared to the thermodynamic limit. Moreover,
in the thermodynamic limit of the pressure, the energy dependence of the
ideal gas term is exactly cancelled by the energy dependence of the term
proportional to the bag constant; the thermodynamic fluctuations in the
parameter λ affect the second term, but not the first one, therefore, the
cancellation is no more expected. The numerical results for the pressure are
shown in Fig. 2. At Ap = 1, the plateau in p is hardly visible, while at
Ap = 10, the thermodynamic limit is a very good approximation.
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Fig. 1. Dependence of the average volume fraction λ on the energy density ε = E
V .

For the meaning of the lines see the text.
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Fig. 2. Dependence of the average pressure p on the energy density ε = E
V . The

meaning of the lines as in Fig. 1.

The effect of thermodynamic fluctuations on the energy density depen-
dence of the temperature is qualitatively similar to that for the pressure.
This is shown in Fig. 3.

Finally, the ratio of the number of strange particles to the number of
non-strange particles is shown in Fig. 4. It is seen that the thermodynamic
fluctuations at Ap = 1 make the decrease of this ratio with increasing energy
density significantly slower. Again, at Ap = 10, we are very close to the
thermodynamic limit.
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Fig. 3. Dependence of the average temperature T on the energy density ε = E
V .

The meaning of the lines as in Fig. 1.
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Fig. 4. Dependence of the average ratio of the number of strange particles to the
number of non-strange particles on the energy density ε = E

V . The meaning of the
lines as in Fig. 1.

5. Exact strangeness conservation

The version of the model [1] with strict strangeness conservation [4] can
be described as follows. The fluid of non-strange particles is described as
before. The fluid of (anti)strange particles consists of pairs of strangeness
zero. The pairs are so loosely bound that the single pair phase space is just
the square of the single particle phase space. The combinatorial factor for
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N identical pairs is 1
(N !)2

, which corrects for the unobservable permutations
of the strange and of the (anti)strange particles. The corresponding grand
partition function can be calculated in closed form [4] and the potential Ω is

Ω = −Tgs(λ)z − T log I0[gs(λ)z] + λBV , (30)

where I0 is the modified Bessel function. We will use an approximate version
of this formula, where the terms proportional to inverse powers of Ap are
neglected. Then

Ω = −Tg(λ)z + λBV + 1
2T log(2πgs(λ)z) . (31)

This yields for the entropy

S = 4g(λ)z − 1
2 log(2πgs(λ)z) + 3

2 . (32)

Since the correction to the entropy is a decreasing function of the pa-
rameter λ, the maximum of the entropy is shifted towards lower values of
this parameter. Because of this shift, at the energy densities where in the
thermodynamic approximation λ was zero or one, now it is, respectively, a
little less than zero and a little less than one. In the transition region, λ is
an increasing function of the energy density. Therefore, to go back to λ = 0
and λ = 1, it is necessary to increase the corresponding energy densities —
the transition region gets shifted towards higher energies. As seen from the
formulae given in Section 2, the decrease of λ at fixed energy density implies
that in the transition region, the temperature and the pressure increase. The
same results from the increase of the energy density at given λ. All these
effects, however, are small because the λ-dependent parts of the corrections
are by factors of the order of Ap smaller than the main terms obtained in
the thermodynamic limit.

In our approximation, formula (21) gets replaced by

λ =
1

4
(ε̄− 3ḡ)− 3

√
π

2Ap

(ḡs − ḡ)ρ0

(gQ − gW )
1
4B

3
4

√
sNN
2m

1

ε̄− 3ḡ + 4ḡs
, (33)

where
ḡs =

gW s

gQs − gW s
. (34)

In formula (33), the terms of higher order in A−1
p have been neglected.

Comparison with the exact solution shows that down to Ap = 1 this is a
very good approximation.

Substituting (33) into the formulae from Section 2 we find the results, for
Ap = 1, corresponding to those from [4]. Since our calculation is analytic, the
following conclusions, concerning the transition region, are easily checked.
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— Across the transition region the correction to the parameter λ decreases
from −0.046A−1

p to −0.051A−1
p . As seen from Fig. 1, for Ap = 1, in

most of the transition region, this is much less than the effect of re-
placing λ by its average, as discussed in Section 4. When Ap increases,
the correction term in (33) is proportional to A−1

p , while the range of

the thermodynamic fluctuations goes like A
− 1

2
p , therefore, the relative

importance of the correction term in (33) decreases. Nevertheless, this
correction has some interesting implications.

— Since the correction to λ is negative, the energies
√
sNN corresponding

to the limits of the transition region increase. This is a small effect:
0.18 GeV at the low-energy end and 0.13 GeV at the high-energy end.

— For the pressure, the exact cancellation of the energy-dependent terms
does not hold any more, but it is still a good approximation. In our
model, the pressure is increased by 37 MeV fm−3 at the beginning and
by 41 MeV fm−3 at the end of the transition region.

— As seen from (15), at given λ, thus in particular at the ends of the
transition region, the temperature increases with increasing ε̄ and,
consequently, with increasing

√
sNN . In our model, the increase is

4 MeV at the beginning of the transition region and 2 MeV at the end.

These results are in qualitative agreement with the results obtained nu-
merically in [4] except for one point. The small shift in energy of the in-
teraction region is positive according to our analysis, while it is negative
in [4]. In order to include the thermodynamic fluctuations of the volume
fraction λ, one has to repeat the calculations from Section 4 using for the
entropy expression (32) instead of expression (16). Since the results are very
similar to those from Section 4, we do not give them here.

6. Discussion and conclusions

The thermodynamic limit is calculated by making the volume tend to
infinity with all the intensive, i.e. measurable locally such as the pressure or
the temperature, parameters kept fixed. As seen from (4), in the Gaździcki–
Gorenstein model, the volume depends on the number of interacting nu-
cleons Ap and on the nucleon–nucleon collision energy

√
sNN . Any change

of
√
sNN changes the energy density of the fluid, which is an intensive pa-

rameter. Therefore, the thermodynamic limit corresponds to Ap tending to
infinity at constant

√
sNN . Of course, in experiment, Ap cannot exceed the

number of nucleons in the colliding nucleus, but formally the limit can be
taken and used to get predictions at finite Ap. This problem, as well as its
solution, is well-known, e.g. from the thermodynamics of ideal gases.
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In the thermodynamic approximation, the fraction λ of the volume which
is occupied by the Q-phase is a well-defined function of the collision energy.
Our observation is that the fluctuations of λ become important for Ap close
to one, though they are of little importance already for Ap = 10. For the
case considered in [4], i.e. for Ap = 1, including the fluctuations changes
the picture significantly. The energy region where λ equals neither zero
nor one, i.e. the transition region, becomes much wider. The plateaus in
the dependence of the temperature and pressure on the energy, which are
characteristic for the phase transitions of the van der Waals-type, disappear.
The decrease, with increasing energy, of the ratio of the number of strange
particles to the number of non-strange particles in the transition region
becomes much slower.

The entropy used in the theory of thermodynamic fluctuations is in the
thermodynamic limit. Therefore, it is a function of state and the fact that
the system is isolated is of no importance for it. Calculating the averages,
however, it is important to include all the allowed states and no others. In
the present paper, the averaging is made at constant energy density and
volume, i.e. at constant collision energy

√
sNN . Moreover it is assumed that

all the chemical potentials are equal zero.
When exact strangeness conservation is included, the thermodynamic

function of the fluid still can be calculated exactly [4]. We prefer, however, to
use an approximation obtained by omitting the terms of higher order in A−1

p .
At first sight, it may seem surprising that this is a good approximation at
Ap = 1, but a comparison with the exact results shows that this is indeed the
case. We have done the calculations both for the approximate and for the
exact formulae. We chose for presentation the approximate results, because
they give much more physical insight. Moreover, the corrections due to exact
strangeness conservation are small, so that not much is gained by calculating
them more precisely.
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