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We study the construction of the classical Becchi—-Rouet—Stora—Tyutin
(BRST) charge and observables for arbitrary reducible gauge theory. Using
a special coordinate system in the extended phase space, we obtain an
explicit expression for the Koszul-Tate differential and show that the BRST
charge can be found by a simple iterative method. We also give a formula
for the classical BRST observables.
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1. Introduction

The modern quantization method for gauge theories is based on the
BRST symmetry [1, 2]. In the framework of the canonical formalism, this
symmetry is generated by the BRST charge. If the quantum BRST charge
exists, it is essentially determined by the corresponding classical one. The
classical BRST charge is defined as a solution to the Poisson-bracket master
equation with certain boundary conditions. A solution to this equation for
irreducible gauge theories |3] was described in [4]. The BRST construction in
the case of reducible gauge theories was given in [5]. The global existence of
the classical BRST charge and observables in the reducible case was proved
in [6] (see also |7]). It is based on the nilpotency and aciclicity of the Koszul-
Tate differential. In [8], the question of quantization of reducible gauge
theories with constraints linear in the momenta is studied.

In this paper, we present a solution to the Poisson-bracket master equa-
tion for the arbitrary reducible gauge theory. To this aim, we find a new
coordinate system in the extended phase space and transform the master
equation by changing variables. This enables us to construct the Koszul—
Tate differential. Then the BRST charge can be obtained by using a simple
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1336 A.V. BRATCHIKOV

iterative method. We also give a formula for the classical BRST observables.
As an example of computing the BRST charge, we consider an SU(2) gauge
invariant reducible theory. In this paper, we extend the analysis of [9] to
cover the Hamiltonian formalism.

The paper is organized as follows. In Section 2, we review the BRST
construction. In Section 3, we introduce a new coordinate system in the
extended phase space. With respect to the new coordinates, the Koszul-
Tate differential takes a standard form [10]. The construction of the BRST
charge is given in Section 4. A formula for the BRST observables is obtained
in Section 5. In Section 6, we find the BRST charge for a reducible theory
of the order of L = 1.

In what follows, the Grassman parity and ghost number of a function X
are denoted by €(X) and gh(X), respectively. The Poisson superbracket in
phase space I' = (P4, Q4), e(P4) = €(Q?) is given by

0X 0Y oY 90X
xyy= IX OV Y 0X |
{ ? } BQAaPA ( ) 3QA8PA ( )
Derivatives with respect to generalized momenta P4 are always understood
as left-hand, and those with respect to generalized coordinates Q@4 (unless

specified) as right-hand ones. Superbracket (1) possesses the following alge-
braic properties:

(XY} = ~(-1) My, X},

{(X,YZ} ={X,Y}Z + (-1)CIV{X, 7},
(=) XX Y}, ZY + eyel. perm.(X,Y, Z) =0.

The last relation is the Jacobi identity for the superbracket.

2. Generating equations for the gauge algebra

Let P be a phase space with the phase-space coordinates &,, €(&,) = €q,
a=1,...,2m, and let G,,, ap =1,...,mop, be the first class constraints
which satisfy the following Poisson brackets:

{(;aov(;bo} =Uy

aobo

Gco )

where Uggbo are phase-space functions. The constraints are assumed to be
of the definite Grassmann parity €qy, €(Gqy) = €4q-

We shall consider a reducible gauge theory of L™ order [5]. That is,
there exist phase-space functions

Z ok k=0,...,L—1, ap=1,...,my
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such that at each stage, the Zs form a complete set

Zgllzﬂ)\akﬂ () = N+ o Zg:_tgl)\aHQ ’ k=0,....[—2,
Zar '\ a0 = A\ 0,
GaoZ50 =0, Z0h-2 gkt -2 k=2,....Lm. (2)

The weak equality, ~, means the equality on the constraint surface
2 Go, =0.

Following the BRST method, the ghost pairs (P,,,c*),k = 0,...,L are
introduced

€(Pay) = €(c™) =¢€q, +k+1,  —gh(P,,) =gh(c™)=k+1.
The BRST charge {2 is defined as a solution to the equations

{Q’ 'Q} =0, (3)
e(2) =1, gh(2)=1, (4)

and satisfying the boundary conditions [5]

90 020
= Ga s ap  9.ar = Zsk71
Jco =0 0 apak71acak P=c=0 ’
One can write
0=004M, M:ZQ(n)’ 0 ~ e (5)
n>2
where

L
Q(l) = Gaocao + Z(Pak71Zg:71 + Nak)cak ’ (6)

k=1

Ng, =0 and Ny, , k > 1, only involves P, ,s < k — 2. Equation (4) implies
Naglp_g =0, M|p_y = 0.

Denote by B the algebra of polynomials in (Pg,,c%, ..., Py, ,c*) with
phase-space functions coefficients, B = C[Py,,...,Pq,] ® CF(P) ®
Cle, ..., c*]. Define the subspace

UZ{XGB:X‘p:QZ:O}.

The space U can be decomposed as U = @,,~( Uy, where U, is the space of
homogeneous polynomials in (¢®, ..., c*) of degree n.
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For any X,Y € U, we have XY € U, {X,Y} € U and, therefore, U is a
Poisson subalgebra of B. It is easily verified that 2 € U.
The bracket {.,.} splits as

{Xa Y} = {Xv Y}f + {Xa Y}O - (_1)E(X)E(Y){K X}o s

where {.,.}¢ refers to the Poisson bracket in the original phase space and

L ox oy
— dc Py,

{X7Y}0 =

Substituting (5) in (3), one obtains the equations

5 — 0, (7)
SM+D =0, (8)
where
L
) e 9
6 = {Q(l),.}O:Ga()az})O+Z(Pak—1zﬂbl}: 1+Nak)ﬁ7
CCT— “
D = LF 4+ AM + 1M, M}, F:{Q(l),ﬁ(l)}ﬁ, (9)

and the operator A is given by
_ 1) _ (1)) e
AX {Q ,X}5 (-1) {X, n }

<

The left-hand side of (7) depends linearly on c¢%, while (8) contains terms
of the order of at least two in these variables. Equation (7) is equivalent to
the nilpotency of §
62 =0. (10)
0 is called the Koszul-Tate differential.
The Poisson algebra of the first class functions is defined by

A={X(©): {X,Ga}lp=0}. (11)

The functions that vanish on X' form an ideal in A. We denote this ideal
by J. Elements of A/J are called observables.
A function @ € B is called a BRST-invariant extension of &g € A if

b =Py + 1T, H:anlén, b, cU,, n>1,
gh(@) =0, {20} =0. (12)
The Poisson algebra A/J is isomorphic to the set of equivalence classes
of BRST-closed functions modulo BRST-exact functions with zero ghost

number (Ker 2/Im{2)° [6]. Elements of (Ker £2/Im{2)° are called the BRST
observables.
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3. Reduction of &

In this section we reduce 6 to a standard form. For k = L, Eq. (2) reads
Zo 2ZL " Zg” 2ZL 'O, (13)
ar_1 A ar,
where {a} _,},{a’_,} are increasing index sets, such that {a}, ,}U{a]_;} =
{ar-1}, Ha}_1}| = {ar}| and 1rar1kZZ/L“1 = |{ar}|. For an index set ¢ =
{i1,49,...,i,}, we denote |i| = n. From (13), it follows that rank Zg- =2 =
{ar-1}| = {ar}l = {af_,}|, and rank Zy* = [{a] _,}|.
One can split the index set {a,— 2} as {aL_Q} ={a}_,}U {a]_,}, such
that [{a}_,}| = [{a]_,}|, and rank Z ,% *=|{d]_,}|.Fork=L—-1, Eq. (2)
implies

ZaL 32L2_|_Zalll/3ZIL/ 2N0

ap_,Taf_y ar_o ap_g

From this it follows that

rankZZé:j =rank Zq; =5 = [{ar—2} — |[{a7_1}| = [{a}_2}| .

Using induction on k, we obtain a set of nonsingular matrices ZZ,’?‘I,
k
kE=1,...,L, and a set of matrices ZZ/’f’l,k =1,..., L, such that
k

ak—1 __ Ag—1 __ "
rankZa;C, =rank Z,, = ‘{ak}’ .

Here, {a}.} U{a}} ={ax}, k=1,...,L —1.
Equation (2) implies

G, Z“g + G, ,,Z = (14)

From this it follows that Gag are independent. We assume that Gag satisfy
the regularity conditions. It means that there are some functions F (&),
{a} U{ag} = {a}, such that (F,,G,y) can be locally taken as new coordi-
nates in the original phase space.

Let f:{a} 1} = {ax}, k= 0,...,L — 1 be an embedding, f(j) = j,
and let {ay} be defined by {ax} = {f(aj, )} U{axr}. Since [{a}}| = [{ar}l,

one can write a, = g(aj) for some function g, and hence

{ak}:{f(ag+1)}u{g(ag)}, k=0,...,L— 1.
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Lemma 3.1 The nilpotent operator § is reducible to the form of

=&y ap?( ) +;7y ) 87??< ) (15)
by the change of variables: (§a; Pags - -+ Pay) =+ (§as Pags -+ Pay ),
& = Fa, €ar = Gy
Prta) = Pt Potay = Pap-
P,, = Pa,, (16)

where k =0,...,L—1, g(a]) =ar.

Proof. To prove this statement, we first observe that Eqs. (16) are solv-
able with respect to (€4, Pag, - - - » Pay, ). The original variables can be repre-
sented as

£GZ§G(§,)7 Pak—Pak (fa, ap? ,ng), k:(),,L

Here, we have used the fact that the P,, depends only on the functions 77&5
with s < k. Assume that the functions &,(¢’) have been constructed. Then
from (16), it follows that

— ! — / /a% — / ( /(_1))a;€/+1
Pe, <P F(ai ) PQ(“Z)Z“ZH N“%H) d a,

wo=P ., k=0, L-1, 17
Pap = Pyay) (17)
Pay = Pl

Here and in what follows
X' (&P, Pl ) =X (& Pags- - Pay) -
Using (9) and (10), one gets

5 / — (5 / I — — 5 / —
S = OPyap) Piag) =
/ g I,, / 7" = A :1’...,L. 1
67Dg(ag) gao I 5Pg(ak) f(ak) k ( 8)
Equations (18) are equivalent to (15). 0O

With respect to the new coordinate system, the condition X € U implies

=0.

! :'Pl:0
@0
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4. The BRST charge

Constructing of §. The Koszul-Tate differential § is determined by (7).
Equation (7) is equivalent to the following system of recurrent equations:

0Ny, = Dy, , k=2,...,L (19)
with N,, = 0, where
Dak = - (Pak—QZg::f + Nak—l) Zg:_l .

Denote by Vj, the subspace of & which consists of the functions depending
only on (&, Pags - - - » Pa,,)- The restriction of § on Vy, is given by

5 i 5
=S5 — 0 Prangp—
“OPany I T Py
Define i
)] )
/ /
O = P ( //) 55/// + leg(a/s/)ép}(a,,) .
Straightforward calculations show that
Sp=0p=0, 0kOy + 0kOk = ng nkdg = Ogng Nkok = KNk
(20)
where ny is the counting operator
k
0 0 ) 0
— ¢ / /
ng = ag(sé./// +P ( //) 57), +Z (Pf(a" 57), +P ( //)5P/ . ) .
ay g(ay) =1 flad) g(a)
The space Vj splits as
V=YV, Vo=vVeVvPea. . .,

with n, X = nX for X € V. It is clear that

) _

VO = {qﬁevk\qs @(g,,P (QM))} . k<L,
v = 0. (21)

The Subspace Vk is invariant under the action of 0, o and M- The
operator ny, : Vi — Vk is invertible. It follows from (20) that 5+ Vi — Vk,
defined by 5k = Jknk , s a generalized inverse of J

ki Ok =0k, 60RO =6, (22)
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and for any X € 17;6,
X =66, X + 0p0 X . (23)

Equation (19) can be written as
5]{3—2Nak = Dak (24)

since Ng, € Vi_2. The operator §;_o and the right-hand side of (24) only
involve the functions N,, with s < k.

To find a solution to (24), we assume that the functions Ny, € Vs_, s < k
have been constructed. Changing variables in (24) (£%, Pags-- -5 Pay_o) —
(€t Pags -+ Pa, ), we get

ok—2Ng, = D, (25)

ag

where
D;k - (Pak_QZng:12 + Nélllcfl) Z‘Ilikﬂ ) Paj—y = Pay_s (5/’73/) :

Equation (2) reads

lag—2 rlag—_1 lag_1a( ~1 1 A0k—10( o1
Zakq Zak = Vak Ga{) Vak fag :

It follows from (14) that

I et A r(—1)\af
G ;) = —gagZa,l, (Z( ))a’ ,

ao 0
and hence
lag—2 rFlak—1 1)
Zak_l Zak EVi_o.

Therefore, Dflk € 17k_2. It is straightforward to check that 5k—2Dflk =0, or
equivalently, using (23), dx—26; , o, = Dy, - Then the general solution to
(25) is given by

Noy = Yo, + 8i_s D, (26)

ag

where Y}, is an arbitrary cocycle, d;_oYy = 0, subject only to the restrictions
Yo, €Veea, (Vo) =e(Noy),  gh(Ya,) = gh(Na,).
By construction, N, €Vi_s. In the original variables, (26) takes the form of

Ny = Yy — 51—;—2 ((Pak—2ZgII::12 + Nak—l) Zglfil) '
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Higher orders. Our next task is to find a solution to (8). Since U =
Vi, ® Clc™, ..., c*], it follows from (21) that the operator np: U — U is
invertible. Denote 67 = (52“. The space U can be decomposed as

U=KersdKerd", (27)
where the corresponding orthogonal projectors are given by
Piers = 067, Piorst =1 — 06T =016

and [ is the identity map. The last relation follows from (23).
In accordance with decomposition (27), Eq. (8) splits as

SM +466tD = 0, (28)
(I-65")R =0, (29)

where R denotes the left-hand side of (8)
R=0M+D. (30)
From (28), it follows that
M+6TD=W, (31)
where W is an arbitrary cocycle, W = 0, subject only to the restrictions

eW)=1, gh(W)=1, WePU. (32)

n>2

To prove that the solution to (31) satisfies (29), we use the approach
of Ref. [11]. If (7) holds, then R = {£2,2}. It is clear that R € U. From
the Jacobi identity {§2,{2,2}} =0, it follows that {2, R} = 0, which is
equivalent to

SR+ AR+ {M,R} =0. (33)
Consider (33) and the condition

STR=0. (34)
Applying 61 to (33) and using (27), we get
R=-5"(AR+ {M,R}). (35)

From (35) by iterations, it follows that R = 0.
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It remains to check (34). The solution to (31) satisfies 6T M = §tW,
which implies
M=5§"6M+W. (36)

By definition (30), we have TR = §76M + 6T D, and therefore by (31) and
(36), 0t R = 0.
One can rewrite (31) in the form of
M = My + 3(M, M), (37)

where

My = (I+6+vA)" (W —167F),

(M, M) = — (I+6%4)7 6% ({M,M})
(I+57A)Y = Y (~nym(staym.
m>0

Equation (37) can be iteratively solved as
M = My + (Mo, Mo) + ... (38)

Series (38) can be obtained by using a diagram technique [12].

5. The BRST observables

To construct the BRST observables, it is necessary to obtain a solution
o (12). This equation is rather difficult to analyze. However, in the variables
(&', P!, c), it takes a special form and can be solved recursively for &, by
repeating exactly the same steps as in the irreducible case. In this section,
we use an alternative approach. Solving (12), we obtain a general compact
expression for @ which has only three terms (Eq. (49)).

Equation (12) can be written as

SIT+Q =0, (39)
where Q = AIT +{M, 11} + {£2,9¢}. Denote by I" the left-hand side of (39)
r={Q,0}=56II+Q€clU. (40)

Using (27), we split (39) into the following two equations:

SIT+66TQ = 0, (41)
(I-66T)T = 0. (42)
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Equation (41) is equivalent to
I+6Q=T, (43)

where T is a cocycle, §7 = 0. Setting 7" = 0, we get from (43) the particular
solution )
IO, =—(I+6"(A+adM)) " §7{02,&}, (44)

where ad X denotes {X, . }.
Now, let us show that (44) satisfies (42). From the Jacoby identity
{02,{02,0}} =0, it follows that

S+ A+ {M,I'} =0. (45)
It is straightforward to check that
§Tr=o0. (46)
Indeed, (40) implies that
§Tr=6%(0I1,+Q)=06"6I,— I, =0,

which gives (46) since IT,, € Ker " N U. Applying 1 to (45) and using (46),
we get

I'=—6T(Al +{M,T}), (47)
from which it follows that I = 0. We conclude that (42) is satisfied by
II, (44).

Any solution to the homogeneous equation
{,1I} =0,
is given by [13]
II={2,T},

where

Yelu, er)=1, gh(T)=-1.

Therefore, the BRST invariant extension of &g is given by

=00y — (I+6T(A+ad M) 16T{0, 0} +{02,7}. (48)
Since ad 2 =0 + A + ad M, (48) can be rewritten as

& =dy— (I+6(ad 2 —6)) " 6H{2,80} + {02,7}. (49)

Using (49), we can effectively construct elements of (Ker £2/Im )Y for the
arbitrary gauge theory.
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6. SU(2) gauge invariant reducible theory of the order of L =1

To illustrate the method of computing the BRST charge, let us consider a
simple reducible model. The model is described by three pairs of canonically
conjugate variables (g, 7,). It is subject to the first class constraints

G = €abetppTe - (50)
The algebra of these functions is the su(2) Lie algebra
{Gaa Gb} = Eachc .

Constraints (50) appear in the Yang—Mills quantum mechanics [14]. The
reducibility condition reads
Gume =0.

QW F and § are given by
OO = G+ Pumac, F = Gueapec’c® — 2P,eapempcie,
0 0

0 = Gaai,Pa + Paﬂa% y

where (¢*,P,) and (¢, P) are auxiliary canonically conjugated variables

€(c?) = €(Py) =1, e(c) =¢€(P) =0,
gh(c") = —gh(P)=1,  gh(c) = —gh(P) = 2.

The change of variables
W;:G’iv ﬂ-é:ﬂ-i’n 'P{:P,L ,Pig):,PCLﬂ-G’ P,:P’ (51)

where ¢ = 1,2, yields

) B ) )
— gl I — Pl /
0= Migp T Psgp 0= Piga TP gpr
B B B
- / /
n = 7T287T£+P1073£+P873"

In the domain with @3 # 0, 3 # 0, transformation (51) is invertible

1 1
TFZ':%(EZ‘]‘TF;—FQOZ‘?T;’) , 71'3:71';/3, 'PZ':’PZ{, 7)3:?(7)é—lpgﬂ'i) .
3

_ _ /
Here, 5ij = 52’]’37 T, — 7TZ'(7T )
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One gets
+ / 1 / b c
0TF = ,P'L'Eibc - 7,Pi90i53bc cc —
¥3
2 1 .
—% <7r’ (EZJP£P§ + (ngl) <€z‘j7ri(7rl) - Pg(ﬂ/,P,)P§-> cle.
3

To obtain a regular expression for 2, we take

1 1
! ! Y k1
W _z (‘P3 + 3€ZJ7TZ-Pj> EglicC .
Then, one finds
W' — %5 F' = —% (I+ 0 A) Pasabccbcc. (52)

Substitution (52) in (38) yields
My = —%Pasabccbcc.

Since {Paeabccbcc,Pdsdefcecf} = 0, it follows from (38) that M = My, and
hence
2 = Guc® + Pymac — %Paeabccbcc )
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