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We study the construction of the classical Becchi–Rouet–Stora–Tyutin
(BRST) charge and observables for arbitrary reducible gauge theory. Using
a special coordinate system in the extended phase space, we obtain an
explicit expression for the Koszul–Tate differential and show that the BRST
charge can be found by a simple iterative method. We also give a formula
for the classical BRST observables.
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1. Introduction

The modern quantization method for gauge theories is based on the
BRST symmetry [1, 2]. In the framework of the canonical formalism, this
symmetry is generated by the BRST charge. If the quantum BRST charge
exists, it is essentially determined by the corresponding classical one. The
classical BRST charge is defined as a solution to the Poisson-bracket master
equation with certain boundary conditions. A solution to this equation for
irreducible gauge theories [3] was described in [4]. The BRST construction in
the case of reducible gauge theories was given in [5]. The global existence of
the classical BRST charge and observables in the reducible case was proved
in [6] (see also [7]). It is based on the nilpotency and aciclicity of the Koszul–
Tate differential. In [8], the question of quantization of reducible gauge
theories with constraints linear in the momenta is studied.

In this paper, we present a solution to the Poisson-bracket master equa-
tion for the arbitrary reducible gauge theory. To this aim, we find a new
coordinate system in the extended phase space and transform the master
equation by changing variables. This enables us to construct the Koszul–
Tate differential. Then the BRST charge can be obtained by using a simple
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
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iterative method. We also give a formula for the classical BRST observables.
As an example of computing the BRST charge, we consider an SU(2) gauge
invariant reducible theory. In this paper, we extend the analysis of [9] to
cover the Hamiltonian formalism.

The paper is organized as follows. In Section 2, we review the BRST
construction. In Section 3, we introduce a new coordinate system in the
extended phase space. With respect to the new coordinates, the Koszul–
Tate differential takes a standard form [10]. The construction of the BRST
charge is given in Section 4. A formula for the BRST observables is obtained
in Section 5. In Section 6, we find the BRST charge for a reducible theory
of the order of L = 1.

In what follows, the Grassman parity and ghost number of a function X
are denoted by ε(X) and gh(X), respectively. The Poisson superbracket in
phase space Γ = (PA, Q

A), ε(PA) = ε(QA) is given by

{X,Y } = ∂X

∂QA
∂Y

∂PA
− (−1)ε(X)ε(Y ) ∂Y

∂QA
∂X

∂PA
. (1)

Derivatives with respect to generalized momenta PA are always understood
as left-hand, and those with respect to generalized coordinates QA (unless
specified) as right-hand ones. Superbracket (1) possesses the following alge-
braic properties:

{X,Y } = −(−1)ε(X)ε(Y ){Y,X} ,
{X,Y Z} = {X,Y }Z + (−1)ε(X)ε(Y )Y {X,Z} ,
(−1)ε(X)ε(Z){{X,Y }, Z}+ cycl. perm.(X,Y, Z) = 0 .

The last relation is the Jacobi identity for the superbracket.

2. Generating equations for the gauge algebra

Let P be a phase space with the phase-space coordinates ξa, ε(ξa) = εa,
a = 1, . . . , 2m, and let Ga0 , a0 = 1, . . . ,m0, be the first class constraints
which satisfy the following Poisson brackets:

{Ga0 , Gb0} = U c0a0b0Gc0 ,

where U c0a0b0 are phase-space functions. The constraints are assumed to be
of the definite Grassmann parity εa0 , ε(Ga0) = εa0 .

We shall consider a reducible gauge theory of Lth order [5]. That is,
there exist phase-space functions

Zakak+1
, k = 0, . . . , L− 1 , ak = 1, . . . ,mk
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such that at each stage, the Zs form a complete set

Zakak+1
λak+1 ≈ 0⇒ λak+1 ≈ Zak+1

ak+2λ
ak+2 , k = 0, . . . , L− 2 ,

Z
aL−1
aL λaL ≈ 0⇒ λaL ≈ 0 ,

Ga0Z
a0
a1 = 0 , Z

ak−2
ak−1Z

ak−1
ak = V

ak−2a0
ak Ga0 , k = 2, . . . , Lm . (2)

The weak equality, ≈, means the equality on the constraint surface

Σ : Ga0 = 0 .

Following the BRST method, the ghost pairs (Pak , cak), k = 0, . . . , L are
introduced

ε (Pak) = ε (cak) = εak + k + 1 , −gh (Pak) = gh(cak) = k + 1 .

The BRST charge Ω is defined as a solution to the equations

{Ω,Ω} = 0 , (3)
ε(Ω) = 1 , gh(Ω) = 1 , (4)

and satisfying the boundary conditions [5]

∂Ω

∂ca0

∣∣∣∣
c=0

= Ga0 ,
∂2Ω

∂Pak−1
∂cak

∣∣∣∣
P=c=0

= Z
ak−1
ak .

One can write

Ω = Ω(1) +M , M =
∑
n≥2

Ω(n) , Ω(n) ∼ cn , (5)

where

Ω(1) = Ga0c
a0 +

L∑
k=1

(
Pak−1

Z
ak−1
ak +Nak

)
cak , (6)

Na1 = 0 and Nak , k > 1, only involves Pas , s ≤ k − 2. Equation (4) implies
Nak |P=0 = 0, M |P=0 = 0.

Denote by B the algebra of polynomials in (Pa0 , ca0 , . . . ,PaL , caL) with
phase-space functions coefficients, B = C[Pa0 , . . . ,PaL ] ⊗ C∞(P ) ⊗
C[ca0 , . . . , caL ]. Define the subspace

U = {X ∈ B : X|P=0, Σ = 0} .

The space U can be decomposed as U =
⊕

n≥0 Un, where Un is the space of
homogeneous polynomials in (ca0 , . . . , caL) of degree n.
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For any X,Y ∈ U , we have XY ∈ U , {X,Y } ∈ U and, therefore, U is a
Poisson subalgebra of B. It is easily verified that Ω ∈ U .

The bracket {. , .} splits as

{X,Y } = {X,Y }ξ + {X,Y }� − (−1)ε(X)ε(Y ){Y,X}� ,
where {. , .}ξ refers to the Poisson bracket in the original phase space and

{X,Y }� =
L∑
k=0

∂X

∂cak
∂Y

∂Pak
.

Substituting (5) in (3), one obtains the equations

δΩ(1) = 0 , (7)
δM +D = 0 , (8)

where

δ =
{
Ω(1), .

}
�
= Ga0

∂

∂Pa0
+

L∑
k=1

(
Pak−1

Z
ak−1
ak +Nak

) ∂

∂Pak
,

D = 1
2F +AM + 1

2{M,M} , F =
{
Ω(1), Ω(1)

}
ξ
, (9)

and the operator A is given by

AX =
{
Ω(1), X

}
ξ
− (−1)ε(X)

{
X,Ω(1)

}
�
.

The left-hand side of (7) depends linearly on cak , while (8) contains terms
of the order of at least two in these variables. Equation (7) is equivalent to
the nilpotency of δ

δ2 = 0 . (10)
δ is called the Koszul–Tate differential.

The Poisson algebra of the first class functions is defined by

A = {X(ξ) : {X,Gα}|Σ = 0} . (11)

The functions that vanish on Σ form an ideal in A. We denote this ideal
by J . Elements of A/J are called observables.

A function Φ ∈ B is called a BRST-invariant extension of Φ0 ∈ A if

Φ = Φ0 +Π , Π =
∑

n≥1 Φn , Φn ∈ Un, n ≥ 1 ,

gh(Φ) = 0 , {Ω,Φ} = 0 . (12)

The Poisson algebra A/J is isomorphic to the set of equivalence classes
of BRST-closed functions modulo BRST-exact functions with zero ghost
number (KerΩ/ImΩ)0 [6]. Elements of (KerΩ/ImΩ)0 are called the BRST
observables.
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3. Reduction of δ

In this section we reduce δ to a standard form. For k = L, Eq. (2) reads

Z
aL−2

a′L−1
Z
a′L−1

aL
+ Z

aL−2

a′′L−1
Z
a′′L−1

aL
≈ 0 , (13)

where {a′L−1}, {a′′L−1} are increasing index sets, such that {a′L−1}∪ {a′′L−1} =
{aL−1}, |{a′L−1}| = |{aL}| and rankZ

a′L−1

aL
= |{aL}|. For an index set i =

{i1, i2, . . . , in}, we denote |i| = n. From (13), it follows that rankZ
aL−2
aL−1 =

|{aL−1}| − |{aL}| = |{a′′L−1}|, and rankZ
aL−2

a′′L−1
= |{a′′L−1}|.

One can split the index set {aL−2} as {aL−2} = {a′L−2} ∪ {a′′L−2}, such
that |{a′L−2}| = |{a′′L−1}|, and rankZ

a′L−2

a′′L−1
= |{a′′L−1}|. For k = L−1, Eq. (2)

implies

Z
aL−3

a′L−2
Z
a′L−2

a′′L−1
+ Z

aL−3

a′′L−2
Z
a′′L−2

a′′L−1
≈ 0 .

From this it follows that

rankZ
aL−3

a′′L−2
= rankZ

aL−3
aL−2 = |{aL−2}| −

∣∣{a′′L−1}∣∣ = ∣∣{a′′L−2}∣∣ .
Using induction on k, we obtain a set of nonsingular matrices Z

a′k−1

a′′k
,

k = 1, . . . , L, and a set of matrices Zak−1

a′′k
, k = 1, . . . , L, such that

rankZ
ak−1

a′′k
= rankZ

ak−1
ak =

∣∣{a′′k}∣∣ .
Here, {a′k} ∪ {a′′k} = {ak}, k = 1, . . . , L− 1 .

Equation (2) implies

Ga′0Z
a′0
a′′1

+Ga′′0Z
a′′0
a′′1

= 0 . (14)

From this it follows that Ga′′0 are independent. We assume that Ga′′0 satisfy
the regularity conditions. It means that there are some functions Fα(ξ),
{α} ∪ {a′′0} = {a}, such that (Fα, Ga′′0 ) can be locally taken as new coordi-
nates in the original phase space.

Let f : {a′′k+1} → {ak}, k = 0, . . . , L − 1 be an embedding, f(j) = j,
and let {αk} be defined by {ak} = {f(a′′k+1)} ∪ {αk}. Since |{a′′k}| = |{αk}|,
one can write αk = g(a′′k) for some function g, and hence

{ak} =
{
f
(
a′′k+1

)}
∪
{
g
(
a′′k
)}

, k = 0, . . . , L− 1 .
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Lemma 3.1 The nilpotent operator δ is reducible to the form of

δ = ξ′a′′0
∂

∂P ′
g(a′′0)

+
L∑
k=1

P ′
f(a′′k)

∂

∂P ′
g(a′′k)

(15)

by the change of variables: (ξa,Pa0 , . . . ,PaL)→ (ξ′a,P ′a0 , . . . ,P
′
aL
),

ξ′α = Fα , ξ′a′′0
= Ga′′0 ,

P ′
f(a′′k+1)

= δPa′′k+1
, P ′

g(a′′k)
= Pa′′k ,

P ′aL = PaL , (16)

where k = 0, . . . , L− 1, g(a′′L) = aL.

Proof. To prove this statement, we first observe that Eqs. (16) are solv-
able with respect to (ξa,Pa0 , . . . ,PaL). The original variables can be repre-
sented as

ξa = ξa
(
ξ′
)
, Pak = Pak

(
ξ′a,P ′a0 , . . . ,P

′
ak

)
, k = 0, . . . , L .

Here, we have used the fact that the Pak depends only on the functions P ′as
with s ≤ k. Assume that the functions ξa(ξ′) have been constructed. Then
from (16), it follows that

Pa′k =

(
P ′
f(a′′k+1)

− P ′
g(a′′k)

Z
′a′′k
a′′k+1
−N ′

a′′k+1

)(
Z ′(−1)

)a′′k+1

a′k

,

Pa′′k = P ′
g(a′′k)

, k = 0, . . . , L− 1 , (17)

PaL = P ′aL .

Here and in what follows

X ′
(
ξ′,P ′a0 , . . . ,P

′
aL

)
= X (ξ,Pa0 , . . . ,PaL) .

Using (9) and (10), one gets

δξ′a = δP ′
f(a′′1)

= . . . = δP ′
f(a′′L)

= 0 ,

δP ′
g(a′′0)

= ξ′a′′0
, δP ′

g(a′′k)
= P ′

f(a′′k)
, k = 1, . . . , L . (18)

Equations (18) are equivalent to (15).

With respect to the new coordinate system, the condition X ∈ U implies

X
∣∣
ξ′
a′′0

=P ′=0
= 0 .
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4. The BRST charge

Constructing of δ. The Koszul–Tate differential δ is determined by (7).
Equation (7) is equivalent to the following system of recurrent equations:

δNak = Dak , k = 2, . . . , L (19)

with Na1 = 0, where

Dak = −
(
Pak−2

Z
ak−2
ak−1 +Nak−1

)
Z
ak−1
ak .

Denote by Vk the subspace of U which consists of the functions depending
only on (ξa,Pa0 , . . . ,Pak). The restriction of δ on Vk is given by

δk = ξ′a′′0
δ

δP ′
g(a′′0)

+

k∑
s=1

P ′f(a′′s )
δ

δP ′g(a′′s )
.

Define

σk = P ′g(a′′0)
δl
δξ′
a′′0

+

k∑
s=1

P ′g(a′′s )
δ

δP ′f(a′′s )
.

Straightforward calculations show that

δ2k = σ2k = 0 , δkσk + σkδk = nk , nkδk = δknk , nkσk = σknk ,

(20)

where nk is the counting operator

nk = ξ′a′′0
δl
δξ′
a′′0

+ P ′
g(a′′0)

δ

δP ′
g(a′′0)

+

k∑
s=1

(
P ′f(a′′s )

δ

δP ′f(a′′s )
+ P ′g(a′′s )

δ

δP ′g(a′′s )

)
.

The space Vk splits as

Vk = V
(0)
k ⊕ Ṽk , Ṽk = V

(1)
k ⊕ V

(2)
k ⊕ . . . ,

with nkX = nX for X ∈ V(n)k . It is clear that

V(0)k =
{
Φ ∈ Vk |Φ = Φ

(
ξ′a′0
,Pf(a′′k+1)

)}
, k < L ,

V(0)L = 0 . (21)

The subspace Ṽk is invariant under the action of δk, σk and nk. The
operator nk : Ṽk → Ṽk is invertible. It follows from (20) that δ+k : Ṽk → Ṽk,
defined by δ+k = σkn

−1
k , is a generalized inverse of δk

δkδ
+
k δk = δk , δ+k δkδ

+
k = δ+k , (22)
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and for any X ∈ Ṽk,
X = δ+k δkX + δkδ

+
k X . (23)

Equation (19) can be written as

δk−2Nak = Dak (24)

since Nak ∈ Vk−2. The operator δk−2 and the right-hand side of (24) only
involve the functions Nas with s < k.

To find a solution to (24), we assume that the functions Nas ∈Ṽs−2, s < k
have been constructed. Changing variables in (24) (ξa,Pa0 , . . . ,Pak−2

) →
(ξ′a,P ′a0 , . . . ,P

′
ak−2

), we get

δk−2N
′
ak

= D′ak , (25)

where

D′ak = −
(
Pak−2

Z
′ak−2
ak−1 +N ′ak−1

)
Z
′ak−1
ak , Pak−2

= Pak−2

(
ξ′,P ′

)
.

Equation (2) reads

Z
′ak−2
ak−1 Z

′ak−1
ak = V

′ak−1a
′
0

ak G′a′0
V
′ak−1a

′′
0

ak ξ′a′′0
.

It follows from (14) that

G′a′0
= −ξ′a′′0Z

′a′′0
a′′1

(Z ′(−1))
a′′1
a′0
,

and hence
Z
′ak−2
ak−1 Z

′ak−1
ak ∈ Ṽk−2 .

Therefore, D′ak ∈ Ṽk−2. It is straightforward to check that δk−2D′ak = 0, or
equivalently, using (23), δk−2δ+k−2D

′
ak

= D′ak . Then the general solution to
(25) is given by

N ′ak = Y ′ak + δ+k−2D
′
ak
, (26)

where Yk is an arbitrary cocycle, δk−2Yk = 0, subject only to the restrictions

Yak ∈ Ṽk−2 , ε(Yak) = ε(Nak) , gh(Yak) = gh(Nak) .

By construction, N ′ak ∈Ṽk−2. In the original variables, (26) takes the form of

Nak = Yk − δ+k−2
((
Pak−2

Z
ak−2
ak−1 +Nak−1

)
Z
ak−1
ak

)
.
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Higher orders. Our next task is to find a solution to (8). Since U =
VL ⊗ C[ca0 , . . . , caL ], it follows from (21) that the operator nL : U → U is
invertible. Denote δ+ = δ+L . The space U can be decomposed as

U = Ker δ ⊕Ker δ+ , (27)

where the corresponding orthogonal projectors are given by

PKer δ = δδ+, PKer δ+ = I − δδ+ = δ+δ

and I is the identity map. The last relation follows from (23).
In accordance with decomposition (27), Eq. (8) splits as

δM + δδ+D = 0 , (28)(
I − δδ+

)
R = 0 , (29)

where R denotes the left-hand side of (8)

R = δM +D . (30)

From (28), it follows that

M + δ+D =W , (31)

where W is an arbitrary cocycle, δW = 0, subject only to the restrictions

ε(W ) = 1 , gh(W ) = 1 , W ∈
⊕
n≥2
Un . (32)

To prove that the solution to (31) satisfies (29), we use the approach
of Ref. [11]. If (7) holds, then R = {Ω,Ω}. It is clear that R ∈ U . From
the Jacobi identity {Ω, {Ω,Ω}} = 0, it follows that {Ω,R} = 0, which is
equivalent to

δR+AR+ {M,R} = 0 . (33)

Consider (33) and the condition

δ+R = 0 . (34)

Applying δ+ to (33) and using (27), we get

R = −δ+(AR+ {M,R}) . (35)

From (35) by iterations, it follows that R = 0.
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It remains to check (34). The solution to (31) satisfies δ+M = δ+W,
which implies

M = δ+δM +W . (36)

By definition (30), we have δ+R = δ+δM + δ+D, and therefore by (31) and
(36), δ+R = 0.

One can rewrite (31) in the form of

M =M0 +
1
2〈M,M〉 , (37)

where

M0 =
(
I + δ+A

)−1 (
W − 1

2δ
+F
)
,

〈M,M〉 = −
(
I + δ+A

)−1
δ+ ({M,M}) ,(

I + δ+A
)(−1)

=
∑
m≥0

(−1)m(δ+A)m .

Equation (37) can be iteratively solved as

M =M0 +
1
2〈M0,M0〉+ . . . (38)

Series (38) can be obtained by using a diagram technique [12].

5. The BRST observables

To construct the BRST observables, it is necessary to obtain a solution
to (12). This equation is rather difficult to analyze. However, in the variables
(ξ′,P ′, c), it takes a special form and can be solved recursively for Φn by
repeating exactly the same steps as in the irreducible case. In this section,
we use an alternative approach. Solving (12), we obtain a general compact
expression for Φ which has only three terms (Eq. (49)).

Equation (12) can be written as

δΠ +Q = 0 , (39)

where Q = AΠ + {M,Π}+ {Ω,Φ0}. Denote by Γ the left-hand side of (39)

Γ = {Ω,Φ} = δΠ +Q ∈ U . (40)

Using (27), we split (39) into the following two equations:

δΠ + δδ+Q = 0 , (41)(
I − δδ+

)
Γ = 0 . (42)
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Equation (41) is equivalent to

Π + δ+Q = Υ , (43)

where Υ is a cocycle, δΥ = 0. Setting Υ = 0, we get from (43) the particular
solution

Πp = −
(
I + δ+(A+ adM)

)−1
δ+{Ω,Φ0} , (44)

where adX denotes {X, . }.
Now, let us show that (44) satisfies (42). From the Jacoby identity

{Ω, {Ω,Φ}} = 0, it follows that

δΓ +AΓ + {M,Γ} = 0 . (45)

It is straightforward to check that

δ+Γ = 0 . (46)

Indeed, (40) implies that

δ+Γ = δ+(δΠp +Q) = δ+δΠp −Πp = 0 ,

which gives (46) since Πp ∈ Ker δ+∩ U . Applying δ+ to (45) and using (46),
we get

Γ = −δ+(AΓ + {M,Γ}) , (47)

from which it follows that Γ = 0. We conclude that (42) is satisfied by
Πp (44).

Any solution to the homogeneous equation

{Ω,Π} = 0 ,

is given by [13]
Π = {Ω, Υ} ,

where
Υ ∈ U , ε(Υ ) = 1 , gh(Υ ) = −1 .

Therefore, the BRST invariant extension of Φ0 is given by

Φ = Φ0 − (I + δ+(A+ adM))−1δ+{Ω,Φ0}+ {Ω, Υ} . (48)

Since adΩ = δ +A+ adM, (48) can be rewritten as

Φ = Φ0 −
(
I + δ+(adΩ − δ)

)−1
δ+{Ω,Φ0}+ {Ω, Υ} . (49)

Using (49), we can effectively construct elements of (KerΩ/ImΩ)0 for the
arbitrary gauge theory.
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6. SU(2) gauge invariant reducible theory of the order of L = 1

To illustrate the method of computing the BRST charge, let us consider a
simple reducible model. The model is described by three pairs of canonically
conjugate variables (ϕa, πa). It is subject to the first class constraints

Ga = εabcϕbπc . (50)

The algebra of these functions is the su(2) Lie algebra

{Ga, Gb} = εabcGc .

Constraints (50) appear in the Yang–Mills quantum mechanics [14]. The
reducibility condition reads

Gaπa = 0 .

Ω(1), F and δ are given by

Ω(1) = Gac
a + Paπac , F = Gaεabcc

bcc − 2Paεabcπbccc ,

δ = Ga
∂

∂Pa
+ Paπa

∂

∂P
,

where (ca,Pa) and (c,P) are auxiliary canonically conjugated variables

ε(ca) = ε(Pa) = 1 , ε(c) = ε(P) = 0 ,

gh(ca) = −gh (Pa) = 1 , gh(c) = −gh(P) = 2 .

The change of variables

π′i = Gi , π′3 = π3 , P ′i = Pi , P ′3 = Paπa , P ′ = P , (51)

where i = 1, 2, yields

δ = π′i
∂

∂P ′i
+ P ′3

∂

∂P ′
, σ = P ′i

∂

∂π′i
+ P ′ ∂

∂P ′3
,

n = π′i
∂

∂π′i
+ P ′i

∂

∂P ′i
+ P ′ ∂

∂P ′
.

In the domain with ϕ3 6= 0, π3 6= 0, transformation (51) is invertible

πi =
1

ϕ3

(
εijπ

′
j + ϕiπ

′
3

)
, π3 = π′3 , Pi = P ′i , P3 =

1

π′3

(
P ′3 − P ′iπi

)
.

Here, εij = εij3, πi = πi(π
′).
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One gets

δ+F ′ =

(
P ′iεibc −

1

ϕ3
P ′iϕiε3bc

)
cbcc −

− 2

ϕ3

(
1

π′3

(
εijP ′iP ′j + ϕ3P ′

)
εijπi(π

′)− P3(π′,P ′)P ′j
)
c jc .

To obtain a regular expression for Ω, we take

W ′ = − 1

π′3

(
P ′3 +

1

ϕ3

εijπ
′
iP ′j
)
εklc

kcl .

Then, one finds

W ′ − 1
2δ

+F ′ = −1
2

(
I + δ+A

)
Paεabccbcc . (52)

Substitution (52) in (38) yields

M0 = −1
2Paεabcc

bcc .

Since {Paεabccbcc,Pdεdefcecf} = 0, it follows from (38) that M = M0, and
hence

Ω = Gac
a + Paπac− 1

2Paεabcc
bcc .
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