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A wide variety of real random composites can be studied by means
of prototypes of multiphase microstructures with a controllable spatial in-
homogeneity. To create them, we propose a versatile model of randomly
overlapping super-spheres of a given radius and deformed in their shape
by the parameter p. With the help of the so-called decomposable entropic
measure, a clear dependence of the phase inhomogeneity degree on the val-
ues of the parameter p is found. Thus, a leading trend in changes of the
phase inhomogeneity can be forecast. It makes searching for possible struc-
ture/property relations easier. For the chosen values of p, examples of two-
and three-phase prototypical microstructures show how the phase inhomo-
geneity degree evolves at different length scales. The approach can also be
applied to preparing the optimal starting configurations in reconstructing
real materials.
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1. Introduction

Materials composed of randomly distributed components of distinct
phases appear both in nature and in synthetic products. Effective prop-
erties of such disordered heterogeneous materials can be connected with the
physical properties of the relevant phases [1–3]. Some of them, e.g. an ef-
fective electrical or heat conductivity, are sensitive to the average spatial
arrangement of the material components. In this context, it should be no-
ticed that the methods of quantitative characterization (in a wide range)
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of the spatial morphology are significant ones in computational materials
science. On the other hand, microstructure modelling makes prediction of
effective properties of heterogeneous media easier. Thus, an efficient method
for statistical three-dimensional (3D) reconstructing is an indispensable part
of developing a reasonable model microstructure [4–17].

The phase spatial inhomogeneity belongs to the simplest statistical fea-
tures of multiphase random systems. However, this quantity is length-scale-
dependent. There are various approaches used to develop such measures.
Mathematicians prefer to consider systems of points randomly placed. How-
ever, the more realistic models make use of digital information contained,
e.g. in cross-sample micrographs or tomographic data. Thus, it is worth to
make one observation. The appropriate and reliable measures should be de-
fined for random systems composed of finite-sized objects, here, unit pixels
1× 1 for two-dimensional (2D) case or unit voxels 1× 1× 1 for 3D.

To obtain quantitative characteristics for an average degree of spatial in-
homogeneity over different length scales, the multiscale entropic descriptors,
the S∆ for binary and the G∆ for grey level patterns have been developed
[18, 19]. The measures were successfully applied in computational statistical
physics, e.g. [20–22]. We recommend the short introduction related to the
above entropic descriptors and 2D numerical example presented in Appendix
of Ref. [19], and for 3D case in Appendix of Ref. [22]. In turn, when some
knowledge about spatial arrangement of the ith phase component is needed,
then a more detailed approach is necessary [23].

2. The phase entropic descriptors

Quite recently, the extended multiphase entropic descriptor S∆ has been
decomposed into phase-separated descriptors Si,∆, i = 1, 2, . . . , w, which
were denoted as fi,∆ in Ref. [23]. The phase descriptor per cell for a multi-
phase material built of w phases is defined by the formula

S∆(k) =
∑

i=1,...,w

(fi,max − fi)/λ =
∑

i=1,...,w

fi,∆(k) =
∑

i=1,...,w

Si,∆(k) , (1)

where fi = kB lnΩi ≡ Si denotes the Boltzmann entropy and fi,max =
kB lnΩi,max ≡ Si,max means its maximal theoretical value. In what fol-
lows, we set kB = 1. The Ωi(k) is the number of realizations for a “non-
equilibrium” actual macrostate (AM) defined as a set {mi(α, k)} of occu-
pation numbers for overlapping sampling λ-cells of size k × k × k in voxels,
α = 1, 2, . . . , λ(k). Similarly, Ωi,max(k) describes the number of realizations
for the “equilibrium” reference macrostate (RM) that relates to a maximally
uniform configuration at a given discrete length scale k. The sum of Si,∆
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over the phases equals exactly the overall S∆. The highest of the local max-
imums of Si,∆(k) quantifies a maximal spatial inhomogeneity per cell for the
ith phase reached at the characteristic length scale kmax(#). In turn, the
first maximum, i.e., that observed at scale kmax(1) ≤ . . . ≤ kmax(#) ≤ . . .,
indicates formation of the ith phase clusters of a characteristic range of sizes,
which are comparable with kmax(1). For further details, the reader is referred
to Ref. [23].

3. Prototypical multiphase microstructures

Recently, an interesting model of super-spheres with versatile shapes
has been considered for heterogeneous materials [24, 25]. In general, a
d-dimensional super-sphere with radius R is defined by

|x1|2p + |x2|2p + · · ·+ |xd|2p ≤ R2p , (2)

where xi are Cartesian coordinates, i = 1, . . . , d, and p ≥ 0 is the defor-
mation parameter indicating to what extent the particle shape has been
deformed from that of a d-dimensional sphere (p = 1). The shape deforma-
tion parameter p ≥ 0 allows changing the shape from convexity to concavity
as p passes downward through 0.5; cf. Fig. 1 in Ref. [25]. Here, we present
such a shape evolution for the specified values of p.

(a) (b) (c) (d)

Fig. 1. Super-spheres with the chosen values of the shape deformation parameter p,
which indicates to what extent the particle shape has been deformed from that of
a three-dimensional sphere. (a) p = 0.2; (b) p = 0.5; (c) p = 1; (d) p = 1.6.

Recently, the simple model of randomly overlapping spheres (with p = 1,
using the present notation) of a radius specified from the two-exponent
power-law (TEPL) has been applied to generate low-cost preferred config-
urations [22]. Here, we apply the same model using super-spheres given
by (2). The centres of super-spheres are randomly distributed on a regu-
lar lattice. Since in our approach the super-spheres of a fixed radius are
free to overlap, clusters of various sizes, shapes and volumes are created. It
is worth noticing that the super-spheres are aligned to the underlying lat-
tice. Thus, for p 6= 1, the super-spheres all possess the same orientation.
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According to our (not published) findings for 2D binary patterns, the ran-
dom orientations of identical finite-sized objects like filled black ellipses can
be reduced to those aligned to the lattice axes without impacting signifi-
cantly the values of entropic descriptor. However, when some of the random
orientations are accompanied with random translations of the underlying
objects, the situation becomes more intricate. We would like to point out
that the entropy-based spatial inhomogeneity measure is sensitive mainly
to changes in arrangement of finite-sized objects. Nevertheless, this point
is worth taking into account in a future project. Now, making use of the
shape deformation parameter p, we obtain a powerful tool for creating, in a
controllable way, prototypes of random multi-phase microstructures. Such
a model extends the recent approach discussed in Ref. [26]. However, an
overlapping sphere model used therein was defined in a different context.

In this manner, complex inhomogeneous microstructures dependent on
the value of parameter p can effortlessly be obtained. This is a reason why
we consider the impact of shape deformation parameter p on evolution of
the system’s spatial inhomogeneity. In the present short paper, the two-
phase microstructures (matrix plus inclusions) were created by black phase
interpenetrating super-spheres randomly distributed on a regular lattice of
size 128×128×128. A few selected values of the parameter p = 0.2, 0.5, 1 and
1.6 were employed. All the “non-equilibrium” configurations were generated
for a fixed radius R = 10.5, equal concentrations of the black and white
phases, and with the same random seed.

Now, as regards the model microstructures, the p-dependent, thus con-
trollable evolution of (a) overall spatial inhomogeneity, i.e., for both phases
S∆(k; p), (b) for black phase Sblack,∆(k; p), and (c) for white matrix phase
Swhite,∆(k; p) can easily be investigated.

In each case, Figs. 2 (a), (b) and (c) show non-monotonic significant
changes in the spatial inhomogeneity measures against the length scale k for
fixed values of the deformation parameter p = 0.1, 0.2, . . . , 1.7. A clear de-
pendence of the phase inhomogeneity degree on the values of the parameter p
is found. In general, the smaller the parameter p is, the lower the spatial
inhomogeneity appears. As expected, at the same time, one can observe a
shift of the first peak toward smaller length scales. Thus, a leading trend
in changes in the phase inhomogeneity can be forecast, which makes search-
ing for possible structure/property relationships easier. Additionally, for the
selected p-cubes with the considered four values of the shape deformation
parameter p (see the grey/green bold lines in Fig. 2), the corresponding cross
sections are illustrated in Figs. 3 (a), (b), (c) and (d).
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(a) (b) (c)

Fig. 2. The evolution of the two-phase system’s spatial inhomogeneity measure
as a function of length scale k for fixed values of the deformation parameter
p = 0.1, 0.2, . . . , 1.7. (a) The overall entropic descriptor S∆(k; p). (b) The black
phase entropic descriptor Sblack,∆(k; p). (c) The white phase entropic descriptor
Swhite,∆(k; p). The grey/green bold lines for the considered measure correspond to
the selected values of the parameter p = 0.2, 0.5, 1 and 1.6.

(a) (b)

(c) (d)

Fig. 3. The illustrative cross sections of the prototypical two-phase microstructures
of size 128×128×128 in voxels, for selected values of the parameter p. (a) p = 0.2;
(b) p = 0.5; (c) p = 1; (d) p = 1.6. (In Fig. 2, the grey/green bold lines for the
considered measure correspond to these prototypes.)
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Additionally, in Fig. 4 (a), the phase entropic descriptors Sblack,∆(k; p),
Sgrey,∆(k; p) and Swhite,∆(k; p) corresponding to the black, grey and white
phases of equal concentrations, respectively, are depicted as functions of
length scale k and for the chosen two near values of shape deformation pa-
rameter, p = 0.30 and 0.45. Notice that a much more complicated behaviour
of the phase entropic descriptors can be found for the corresponding pro-
totypes of the three-phase microstructure. This time, one can observe the
irregular interplaying of the phase entropic descriptors in Fig. 4 (a). Such
a behaviour of the Sblack,∆(k; p), Sgrey,∆(k; p) and Swhite,∆(k; p) is hard to
predict. For completeness, an exterior view of the related p-cubes is shown
in Figs. 4 (b) and (c), respectively. The complex case of three-phase mi-
crostructures needs further investigations.

(a)

(b) (c)

Fig. 4. (a) The black phase entropic descriptor Sblack,∆(k; p), the black line, the grey
phase entropic descriptor Sgrey,∆(k; p), the grey line, and the white phase entropic
descriptor Swhite,∆(k; p), the thick black/red line, for a three-phase system as a
function of length scale k for selected values of p = 0.30 (the bottom three lines)
and 0.45 (the upper ones). (b) The three-dimensional exterior view of the related
cube with p = 0.30. (c) The same for p = 0.45.
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Finally, it should be noticed that three-phase microstructures corre-
sponding, in the present notation, to the case p = 1 can also be found in
the earlier mentioned Ref. [26]. However, the overlapping sphere model used
therein was defined for different purposes, namely for building of percolation
phase diagrams.

4. Concluding remarks

Many types of real random composites can be analysed using prototypes
of the multiphase microstructures with a controllable spatial inhomogeneity.
In order to create them, a low-cost model of randomly overlapping super-
spheres can be applied. In turn, the versatile entropy method of quanti-
tative characterization of spatial features of any phase microstructure can
efficiently be used in searching for possible structure/property relationships.
For instance, the expected dependence of an effective DC conductivity on the
spatial inhomogeneity of phases of a multiphase complex composite becomes
a much easier task. Using a simple variant of the real-space renormalization
group approach [27], the related investigations were done (DF&RP) with
promising results for a two-phase microstructure.
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