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Pair creation of spin- 12 particles in Minkowski spacetime is investigated
by obtaining exact solutions of the Dirac equation in the presence of electro-
magnetic fields and using them for determining the Bogoliubov coefficients.
The resulting particle creation number density depends on the strength of
the electric and magnetic fields.
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1. Introduction

After the pioneering works of Sauter [1], Heisenberg and Euler [2] on the
particle creation by the strong electromagnetic fields, Schwinger formulated
the following pair creation probability per unit volume and time by obtaining
the one-loop effective action in a constant and homogeneous classical electric
field (in natural units, ~ = c = 1) [3]:

ω =
(eE)2

4π3

+∞∑
n=1

1

n2
exp

(
−nπm

2

eE

)
, (1)

where m and e are the mass and charge of the electron, E is the electric
field, respectively. Since then, this process is called the Schwinger mechanism
and has become an important problem in the quantum field theory (QFT).
This kind of a classical electric field is assumed to be of the order of E ∼
1016 V/cm [4] which is very difficult to generate using the current technology.
Strong fields arising from the collisions between the relativistic high-energy
particles and heavy ions are called color electric fields and have ability to
create particles from the vacuum. These type of collisions are generated at
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the modern colliders, i.e. at CERN. The Schwinger mechanism is attributed
to the hadronic particle creation and, on the base of Color Glass Condensate
(CGS), this phase is called Glasma.

The Schwinger mechanism have been studied in the presence of various
stationary and non-stationary external fields [5–9]. The studies about the
Schwinger mechanism in gauge fields having both electric and magnetic field
components have revealed that electric field has a dominant influence in
creating the particles. Therefore, the pair creation mechanism is totally
attributed to the pure electric field [10]. This quantum effect of the classical
electromagnetic fields is carried out to the curved spacetime as well [11–13].

A considerable number of authors raised in their studies a point that
the magnetic field reduces particle creation process. One of the aims of this
study is to investigate this phenomenon for a particular choice of the electro-
magnetic gauge field that has both electric and magnetic field components.

The calculation of fermionic particle creation rate requires to define the
positive and negative frequency energy states, namely the “in” and “out”
mode vacuum solutions. For the motion of the relativistic charged parti-
cles moving in an external field, analysis of mode functions as positive and
negative frequency solutions is not easy, since the Lagrangian of the corre-
sponding system depends completely on space-time coordinates. Namely,
particle concept becomes indefinite owing to interaction with the external
fields. For this reason, we require a condition to define the “particle” concept.
In the present study, we will apply a quasiclassical method. We obtain exact
solutions of the Hamilton–Jacobi (HJ) equation and discuss their asymptotic
behavior in the infinite past and future. Then, asymptotic behavior of the
solutions of the Dirac equation in the neighborhood of the time singularities
will be identified. With the help of this analysis and comparison of asymp-
totic solutions of both HJ and Dirac equations in the infinite past and future,
the particle picture will be identified.

We define positive and negative frequency mode functions in such a way
that the positive frequency mode function approaches eiS(t) and the negative
frequency one e−iS(t) in asymptotic regions [4], where S(t) is the solution
of the HJ equation for the presence of a 4-vector electromagnetic potential
given as

Aν = B0τ [1 + tanh(x/τ)]δ2
ν − E0(Γ + Λt)δ3

ν , (2)

and τ , Γ and Λ are constants. This new suggested form of the vector
potential generates parallel stationary electric [5] and Sauter-type magnetic
fields [14] that are persuaded in the Glasma flux tube model of high-energy
heavy-ion collisions.
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The magnetic current emerging is found to be

jν =
1

4π

2
∣∣∣ ~B∣∣∣
τ

tanh(x/τ)

 δ2
ν . (3)

The outline of the paper is as follows: In Section 2, we solve the rela-
tivistic HJ equation and obtain the asymptotic behavior of the solutions. In
Section 3, we solve the Dirac equation for the considered electromagnetic
fields and obtain the asymptotic limits of the solutions to define the vac-
uum “in” and “out” modes by referring the asymptotic solutions of the HJ
equation. We use the Bogoliubov transformation technique to relate the so-
lutions at the boundaries and calculate the particle creation number density
for fermions in Section 4. Finally, in Section 5, we discuss the results we
obtained. Throughout the paper, the natural units, ~ = c = 1, are used.

2. Solutions of the Hamilton–Jacobi equation

The relativistic HJ equation for the action S is given by [11]

ζεθ
[
∂S

∂xε
− eAε

] [
∂S

∂xθ
− eAθ

]
+m2 = 0 , (4)

where ζεθ = (1,−1,−1,−1) is the Minkowski metric, m is the mass of the
particle and Aν is the 4-vector electromagnetic potential.

The electromagnetic potential satisfies the Lorentz gauge, and the Lorentz
invariants are determined from the electromagnetic field tensor as follows:

F π%Fπ% = 2
(
B2 − E2

)
= 2B2

0 sech4(x/τ)− E2
0Λ

2 (5)

and
F π%F ∗π% = 4 ~E · ~B = 4ΛE0B0 sech2(x/τ) . (6)

Because of the space-time dependence of the considered electromagnetic
field, the solution of the HJ equation can be separated as follows:

S(t, ~x ) = P (x) +Q(t) + (yky + zkz) , (7)

where ky and kz can be viewed as the conserved momenta that exist given
the symmetries chosen for the electromagnetic gauge (2). By using (7) in
Eq. (4), we obtain

Q̇2− Ṕ 2− [kz +eE0(Γ +Λt)]2− [ky−eB0τ(1+tanh(x/τ))]2 +m2 = 0 , (8)

where dot and acute denote derivatives with respect to t and x, respectively.
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We obtain two first order differential equations as follows:

Q̇2 − [eE0(Γ + Λt)]2 − 2kzeE0(Γ + Λt) +m2 − k2
z = v2 (9)

and

Ṕ 2 + {eB0τ [1 + tanh(x/τ)]}2 − 2kyeB0τ [1 + tanh(x/τ)] = v2 , (10)

where v2 is the constant of separation.
Time-dependent external fields cause unstable vacuum and this results

in the pair creation by vacuum. For this reason, the dynamics involving
spatial coordinates affects the solutions only by a constant and we obtain
the solution of the HJ equation for electromagnetic gauge (2) as follows:

S(%, ~x ) = S0(0, ~x ) +
eE0

Λ

%∫
0

√
%2 +

2kz
eE0

%+

(
k2
z + v2 −m2

e2E2
0

)
d%

=

(
%eE0 + kz

2Λ

)√
%2 +

2kz
eE0

%+

(
k2
z + v2 −m2

e2E2
0

)
+

(
v2 −m2

2eE0Λ

)

× ln

{
2%+

2kz
eE0

+ 2

√
%2 +

2kz
eE0

%+

(
k2
z+v2−m2

e2E2
0

)}
+ S0(0, ~x ) ,

(11)

where % = (Γ + Λt).
The dependence of the solution on time is derived by ψ → eiS(t) and

we achieve the following expressions for the asymptotic behavior of the rel-
ativistic wave function:

ψ(t→∓∞) = eiS(t) → e
±i

(
eE0Λ

2

)
t2±i

(
v2−m2

2eE0Λ

)
ln(2Λ|t|)

, (12)

where the upper and lower signs represent the negative and positive-frequency
states, respectively.

3. Solutions of the Dirac equation

The Dirac equation in external electromagnetic fields is given by [15]

[iγν∂ν + eAνγ
ν −m]ψ = 0 , (13)

where γν are Dirac matrices, Aν is the 4-vector electromagnetic potential,
m is the mass of electron, e is the charge of the electron and ψ is the four-
component spinor.
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The Dirac equation yields four coupled differential equations for the
spinor and usually it is difficult to obtain the exact analytical solutions,
in particular, for mathematically complicated external fields. This difficulty
of the problem has been accomplished by Feynmann and Gell-Mann by con-
sidering a two-component form of the Dirac equation in the presence of
electromagnetic fields as follows [16]:[(

~P − e ~A
)2

+m2 − e~σ ·
(
~B + i ~E

)]
φ = (p0 − eA0)2φ , (14)

where ~σ are usual Pauli matrices and φ = (
φ1

φ2
) are the solutions of the

two-component equation. The four-component spinor can be derived from φ
as follows:

ψ =


[
~σ ·
(
~P − e ~A

)
+ (p0 − eA0) +m

]
φ[

~σ ·
(
~P − e ~A

)
+ (p0 − eA0)−m

]
φ

 . (15)

Thence, for the purpose of obtaining the analytic solutions, we follow up
the two-component formalism and consider the electromagnetic gauge (2).
Because the given gauge field depends on x coordinate and t, both ky and
kz are constants of the motion and solutions can be written in the form of

φ = ei(yky+zkz)

(
χ1(x)T1(t)
χ2(x)T2(t)

)
. (16)

Therefore, with the usage of Eqs. (2) and (16), Eq. (14) becomes

{
− d2

dx2
− eB0(eB0τ

2 + s) sech2(x/τ) + 2eB0(eB0 − τky) tanh(x/τ)

+2eB0τ(eB0τ − ky) +m2 + k2
y + k2

z +
d2

dt2
+ (eE0Λt)

2

+2eE0Λ(eE0Γ + kz)t+ eE0Γ (eE0Γ + 2kz)− iseE0Λ
}
χs(x)Ts(t) = 0 ,

(17)

where the spin index s has the ±1 eigenvalues corresponding to the spinors
φ1 and φ2, respectively. This equation can be written in a simpler form as[

F̂ (x) + Q̂(t)
]
χs(x)Ts(t) = 0 (18)
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with the following definitions:

F̂ (x) = − d2

dx2
− eB0(eB0τ

2 + s) sech2(x/τ) + 2eB0(eB0 − τky) tanh(x/τ)

+2eB0τ(eB0τ − ky) +m2 + k2
y + k2

z , (19)

Q̂(t) =
d2

dt2
+ (eE0Λt)

2 + 2eE0Λ(eE0Γ + kz)t

×eE0Γ (eE0Γ + 2kz)− iseE0Λ . (20)

Equation (18) has a separable form, so we get the following two equations:[
F̂ (x)−$2

]
χs(x) = 0 , (21)[

Q̂(t) +$2
]
Ts(t) = 0 , (22)

where $2 is the constant of separation.
By defining x = τr, Eq. (21) becomes[

d2

dr2
+Σ sech2 r − Υ tanh r − ε

]
χs(x) = 0 , (23)

where the definitions

Σ = eB0

(
eB0τ

2 + s
)
, Υ = 2eB0τ

2 (eB0 − τky) ,
ε = 2eB0τ

3(eB0τ − ky) + τ2
(
m2 + k2

y + k2
z −$2

)
(24)

were made.
Following Rosen and Morse [17], we set χs(r) = era cosh−b rfs(r) and

obtain the following equation:{
f
′′
s + 2(a− b tanh r)f

′
s +

[
(Σ − b(b+ 1)) sech2 r

−(2ab+ Υ ) tanh r +
(
a2 + b2 − ε

)]
fs
}

= 0 . (25)

In order χ/f to be finite in the range of −∞ ≤ r ≤ +∞, (a2 + b2 − ε) = 0
and (2ab+ Υ ) = 0 conditions are necessary [17]. From these conditions, we
derive the following expressions for a and b:

a = −1
2

[
(ε+ Υ )

1
2 − (ε− Υ )

1
2

]
(26)

and
b = 1

2

[
(ε+ Υ )

1
2 + (ε− Υ )

1
2

]
. (27)
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Therefore, keeping these expressions and by introducing η = 1
2(1 +

tanh r), we arrive at{
η(1− η)

d2

dη2
+ [a+ b+ 1− 2(b+ 1)η]

d

dη
+ [Σ − b(b+ 1)]

}
f = 0 (28)

which is the differential equation satisfied by the hypergeometric functions.
The hypergeometric function remaining finite at η = 0 will provide this
equation, and a solution will be given as [18]

fs(η) = 2F1

[
(b+ 1/2)− (Σ + 1/4)

1
2 ; (b+ 1/2) + (Σ + 1/4)

1
2 ; a+ b+ 1; η

]
.

(29)
So, we obtain

χs = era cosh−b r 2F1

[
(b+ 1/2)− (Σ + 1/4)

1
2 ;

(b+ 1/2) + (Σ + 1/4)
1
2 ; a+ b+ 1; η

]
. (30)

For this solution to be convergent at infinity, the following condition must
be satisfied [17]: [

(b+ 1/2)− (Σ + 1/4)
1
2

]
= −n . (31)

Then
a = −Υ

[
(4Σ + 1)

1
2 − (2n+ 1)

]−1
(32)

and
b = 1

2

[
(4Σ + 1)

1
2 − (2n+ 1)

]
. (33)

The constant of separation $ can be easily derived from (a2 + b2 − ε) = 0.
By introducing a variable ξ =

√
2

eE0Λ
(eE0Λt + eE0Γ + kz), we obtain

the following equation from Eq. (22):{
d2

dξ2
+

1

4
ξ2 − iesE0Λ+ k2

z −$2

2eE0Λ

}
Ts(ξ) = 0 . (34)

Solutions of this differential equation are parabolic cylinder functions [18]

Ts(ξ) =
e−

πã
4

(2eE0Λ)
1
4

[
D−iã−1/2

(
eiπ/4ξ

)
+D∗−iã−1/2

(
eiπ/4ξ

)]
, (35)

where ã = ( iesE0Λ+k2z−$2

2eE0Λ
).

Therefore, exact solutions are obtained and all components of the Dirac
spinor can be found with the insertion of Eqs. (30) and (35) into Eq. (16).
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4. Particle creation via Bogoliubov transformation method

Due to difficulty of the direct observation of the pair creation in a con-
stant field [10], because the typical |eE| is smaller than m2, the particle
creation will be induced by the time-dependent components of the wave-
function (28), namely the parabolic cylinder functions.

Two solutions of Eq. (34) are given as

Ts1(ξ) =
e−

πã
4

(2eE0Λ)
1
4

D−iã−1/2

(
eiπ/4ξ

)
(36)

and

Ts2(ξ) =
e−

πã
4

(2eE0Λ)
1
4

D∗−iã−1/2

(
eiπ/4ξ

)
. (37)

These are not the only solutions and any of the remaining two-sets can be
constructed via Bogoliubov coefficients as follows:

T̃s1(ξ) = αTs1(ξ)− β∗Ts2(ξ) (38)

and
T̃s2(ξ) = α∗Ts2(ξ) + βTs1(ξ) . (39)

The Bogoliubov transformation method is a technique that associates
a canonical commutation relation algebra or a canonical anti-commutation
relation algebra into another representation, caused by an isomorphism [19].

In the Minkowskian QFT, eigenfunctions of the field equation, ψ, can be
written with the help of the mode solutions as [19, 20]

ψ =
∑
n

(
anϕn + a†nϕ

∗
n

)
=
∑
k

(
bkΘk + b†kΘ

∗
k

)
, (40)

where we have the relations (ϕi, ϕj) = δij , (ϕ∗i , ϕ
∗
j ) = δij , (ϕi, ϕ

∗
j ) = 0 and

(Θi, Θj) = δij , (Θ∗i , Θ
∗
j ) = δij , (Θi, Θ

∗
j ) = 0 for ϕ and Θ that are mode

solutions. The ϕ and Θ can be expanded in terms of each other.
The creation and annihilation operators a†n, b†k and an, bk are given by

the following expressions:

an =
∑
k

(
αknbk + β∗knb

†
k

)
, (41)

bk =
∑
n

(
α∗knan − β∗kna†n

)
. (42)
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αkn and βkn are Bogoliubov coefficients determined by αij = (Θi, ϕj), βij =
−(Θi, ϕ

∗
j ). They are related as∑

i

(αniα
∗
ki − βniβ∗ki) = δnk , (43)∑

i

(αniβki − βniαki) = 0 . (44)

Let |0a〉 and |0b〉 be two states of vacuum in the Fock space related to each
particle notion in (30). They are represented for all n and k as

|0a〉 : an|0a〉 = 0 , (45)
|0b〉 : bk|0b〉 = 0 . (46)

If |0b〉 is introduced as the usual vacuum, then |0a〉 is regarded as a many-
particle state. Therefore, the number of Θn-mode particles in the state of
|0a〉 is

〈0a|b†kbk|0a〉 =
∑
n

|βkn|2 . (47)

If the ϕn(x) are defined as positive frequency modes and the Θn(x) modes
are linear unification of them, then βjk = 0. Then, bk|0b〉 = 0 and ak|0a〉 = 0.
Hence, ϕj and Θk modes have a common vacuum state. If βjk 6= 0, then Θk
contain a combination of positive-ϕk and negative-ϕ∗k frequency modes.

Therefore, we can define the positive- and negative-frequency solutions
in order to find the Bogoliubov coefficients. Asymptotic expansion of the
parabolic cylinder functions is given by [21]

Dν(z)|z|→+∞ ≈ zνe−z
2/4 , | arg z| < 3π

4
. (48)

Taking into account this relation for Eqs. (36) and (37) in the limit of t →
+∞ (namely, ξ → +∞) and comparing their asymptotic expansion with
Eq. (12), we see that the positive- and negative-frequency mode solutions
will be, respectively, as follows:

Ts1(ξ) ≈
(√

2eE0Λ|t|
)−1/2

e(−ieE0Λt2/2−iã ln(
√

2eE0Λ|t|)) (49)

and
Ts2(ξ) ≈

(√
2eE0Λ|t|

)−1/2
e(ieE0Λt2/2+iã ln(

√
2eE0Λ|t|)) . (50)

We conclude that the solutions behave as T± ≈ e±iS(t).
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For t→ −∞(ξ → −∞), the solutions are in the form of

Ts1(ξ) =
e−

πã
4

(2eE0Λ)
1
4

D∗−iã−1/2

(
−eiπ/4ξ

)
(51)

and

Ts2(ξ) =
e−

πã
4

(2eE0Λ)
1
4

D−iã−1/2

(
−eiπ/4ξ

)
(52)

so that their asymptotic behavior should be T± ≈ e±iS(t). It is clear that the
solutions are different in the asymptotic regions and this is the nature of the
particle creation. Therefore, the solutions for t → +∞ belong to vacuum
“out” mode, whereas are vacuum “in” mode for t→ −∞.

The positive- and negative-frequency vacuum “out” and “in” modes can
be related to each other with the Bogoliubov coefficients. By using Eq. (39),
we can write

D−iã−1/2

(
−eiπ/4ξ

)
= α∗D∗−iã−1/2

(
eiπ/4ξ

)
+ βD−iã−1/2

(
eiπ/4ξ

)
. (53)

Expanding the left-hand side of this expression according to the below for-
mula [21]

Dν(z) =

[
e−iπνDν(−z) +

√
2π

Γ (−ν)
e−iπ(ν+1)/2D−ν−1(iz)

]
, (54)

and using the result [Dν(z)]∗ = D−ν−1(−iz) that can be easily derived by
taking the advantage of the relation between the parabolic cylinder function
and the Whittaker function given as [21]

Dν(z) = 2(ν+ 1
2)/2z−1/2W 1

2(ν+ 1
2),− 1

4

(
z2/2

)
, (55)

we obtain the Bogoliubov coefficients α and β as follows:

α =

√
2π
ă ie

−πă/2

Γ (−iă)
(56)

and
β = e−πă , (57)

where ă = (k
2
z−$2

2eE0Λ
) and |α|2 + |β|2 = 1 condition is satisfied.

Then, we find the below expression for the Bogoliubov coefficients

|α|2

|β|2
=

2π

ă
eπă

1

|Γ (−iă)|2
. (58)
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By considering the following formula for Gamma functions [17]

|Γ (iq)|2 =
π

q sinh(πq)
, (59)

the number density of the created particles can be computed as follows:

N ' |β|2 =

[
|α|2

|β|2
+ 1

]−1

= e−2πă , (60)

where the parameter ă in terms of the physical constants of four-vector
potential (2) has been given as below

ă =
1

2eE0Λ

 4eτ2B2
0(eB0 − τky)2(

−1− 2n+
√

1 + 4eB0(s+ eB0τ2)
)2

− 1

4τ2

(
−1− 2n+

√
1 + 4eB0(s+ eB0τ2)

)2

−
(
m2 + k2

y

)
− 2eB0τ(eB0τ − ky)

]
. (61)

5. Conclusion

In this study, we used the two-component formalism for the Dirac equa-
tion that is proposed by Feynmann and Gell-Mann. This approach to the
problem removes the complexity of obtaining the exact solutions. One of
the advantages of working with this form of the Dirac equation is that these
solutions are valid for the Klein–Gordon particles in the case of s = 0. Thus,
the results can be used both for scalar and fermionic particles.

The mechanism of particle production by strong electric fields must be
significant in order to explain the early stages of the heavy-ion collisions,
for example, their effect on the thermalization of quarks and gluons. For
the analysis of our problem, we take into account a strong constant electric
field and a space-dependent hyperbolic magnetic field. Exact solutions of
the Dirac equation were identified in terms of the parabolic cylinder and
hypergeometric functions.

Existence of the strong electric fields causes that unstable vacuum is
asymptotically static at future. The “in” and “out” vacuum states were deter-
mined with the help of the asymptotic solutions of relativistic HJ equation.
They were related by the Bogoliubov coefficients that are used to calculate
the particle creation number density in Eq. (60). This expression depends on
the parameters of electric and magnetic fields and is not in the Fermi–Dirac
thermal form. As it is seen by analyzing the formula and also from figure 1,
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selected form of the magnetic field has a reduction effect on the creation of
fermionic particles. This situation is compatible with previously obtained
results. Moreover, it can be seen from figure 1 that the particle creation rate
increases due to the electric field strength, (E0Λ).

Fig. 1. (Color online) Particle creation number density versus electric field strength
is depicted. m = 1;n = 1; τ = 1; ky = 1; kz = 1; Λ = 1 and B0 : 0 (thick
black/blue), B0 : 0.2 (gray/red), B0 : 0.4 (black).

This study is supported by the Research Fund of Mersin University in
Turkey with the project number: 2016-1-AP4-1425.
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