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In this article, we study Langevin diffusion coefficients for the five-
dimensional N = 2 STU model in the presence of higher derivative correc-
tions. We obtained the effect of black hole charge, corresponding to the
chemical potential, on the Langevin diffusion coefficients ratio. We confirm
universal behavior of transverse-to-longitudinal ratio of coefficients.
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The study of quark–gluon plasma (QGP) using the AdS/CFT corre-
spondence [1, 2] was in the last decade an important subject [3]. According
to AdS/CFT correspondence, there is a relation between a conformal field
theory (CFT) in d-dimensional space and a supergravity theory in (d+ 1)-
dimensional anti-de Sitter (AdS) space. It is indeed a relation between the
type IIB string theory in AdS5×S5 space and N = 4 super Yang–Mills the-
ory on the 4-dimensional boundary of AdS5 space. The study of the QGP
is a testing ground for the finite temperature field theory, which is impor-
tant to understand the early evolution of the universe. The most important
quantities of QGP are drag force [4, 5] and jet-quenching parameter [6].

The jet-quenching parameter is obtained using the expectation value of a
closed light-like Wilson loop in the dipole approximation [7]. In order to cal-
culate the jet-quenching parameter in QCD, one needs to use perturbation
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theory. However, by using the AdS/CFT correspondence, it can be calcu-
lated in non-perturbative quantum field theory [8]. The motion of a heavy
quark in context of QCD has a dual picture in the string theory, one can
imagine an open string attached to the D-brane and stretched to the black
hole horizon. The stochastic motion related to the fluctuation correlations
of the trailing string [9, 10] can be obtained in terms of the Langevin coeffi-
cients [11, 12]. Therefore, the Langevin coefficients are important to study
QGP. In Ref. [13], it has been found that the longitudinal Langevin diffusion
coefficient along the string motion is larger than the transverse coefficient.
Also, in Ref. [14], the Langevin diffusion of a relativistic heavy quark in a
general anisotropic strongly coupled background has been studied.

In this article, we would like to study the Langevin diffusion coefficients
in the STU model. The STU model includes a chemical potential to the
model. For example, the presence of a baryon number chemical potential
for heavy quark in the context of AdS/CFT correspondence yields to in-
troducing a macroscopic density of heavy-quark baryons. The STU model
is a kind of D = 5, N = 2 gauged supergravity theory which is dual to
the N = 4 SYM theory with the finite chemical potential. The solutions
of N = 2 supergravity may be, however, also the solutions of supergrav-
ity theory with high supersymmetry. It has been found that the N = 2
supergravity is an ideal laboratory [15]. Therefore, the STU model may
be considered as a gravity dual of a strongly coupled plasma. Moreover,
the D = 5, N = 2 gauged supergravity theory is a natural way to ex-
plore gauge/gravity duality, and three-charge non-extremal black holes are
important thermal background for this correspondence. The STU model
describes a five-dimensional space-time whose four-dimensional boundary
includes QCD. Drag force and jet-quenching parameter has been already
obtained using the AdS/CFT in STU background, and such studies are
called STU-QCD correspondence [16–20]. Shear viscosity-to-entropy ratio
of dual QGP was also investigated in the STU model [21]. We will also study
universal longitudinal and transverse Langevin coefficients ratio in the pres-
ence of higher derivative corrections. The STU model was already used to
study holographic superfluids and superconductors [22, 23].

The STU model has generally an 8-charge non-extremal black hole. How-
ever, there are many situations of the black holes with four and three charges.
In this case, there is a great difference between the three-charge and four-
charge black holes. For example, if there are only 3 charges, then the entropy
vanishes (except in the non-BPS case). So, one really needs four charges to
get a regular black hole. In 5 dimensions, the situation is different, there is
no distinction between BPS and non-BPS branch. So, in 5 dimensions, the
three-charged configurations are the most interesting ones [24]. Hence, our
interest is in the three-charged non-extremal black hole solution in N = 2
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gauged supergravity which is called the STU model described by the follow-
ing solution [25]:

ds2 = − fk

H
2
3

dt2 +H
1
3

(
dr2

fk
+
r2

R2
dΩ2

3,k

)
, (1)

where

fk = k − µ

r2
+
r2

R2
H ,

H =
3∏
i=1

Hi ,

Hi = 1 +
qi
r2
, i = 1, 2, 3 . (2)

Here, R is the constant AdS radius relating to the coupling constant via
R = 1/g, and r is the radial coordinate along the black hole, so the boundary
of AdS space is located at r → ∞ (or r = rm on the D-brane). The black
hole horizon is specified by r = rh which is obtained from fk = 0. In the
STU model, there are three real scalar fields given by

Xi =
H

1
3

Hi
(3)

which is also a solution of metric (1) and satisfies the following condition∏3
i=1X

i = 1. In other words, if one sets X1 = S, X2 = T , and X3 = U ,
then there is the special condition written as STU = 1. Finally, the factor
of k indicates the space curvature. The special case of k = 0 corresponds to
the black brane limit relevant to the thermal CFT in an infinite volume.

The Brownian motion of moving quark at fixed velocity can be under-
stood using generalized Langevin coefficients. There are longitudinal and
transverse Langevin coefficients which can be written in terms of world-sheet
metric temperature given by [13, 14]

T =
1

4π

√
1

G00Grr
(G00Gpp)

′
(
G00

Gpp

)′∣∣∣
r=r0

, (4)

where prime denote derivative with respect to r and
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Gpp =
H

1
3 r2
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=
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) (
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) (
1 + q3
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)) 1
3 r2

R2
. (8)

r0 is root of the following equation (obtained from the reality condition):

G00 +Gppv
2 = 0 (9)

which for the case of k = 0 reduces to the following equation:

0 =
(
1− v2

)
r6 +

(
R2 + (q1 + q2 + q3)

(
1− v2

))
r4

+
(
(q1q2 + q1q3 + q2q3)

(
1− v2

)
− µR2

)
r2 + q1q2q3

(
1− v2

)
. (10)

It is clear that at v = 0 limit r0 = rh, where rh is the black hole horizon radius
given by fk = 0. It has been argued that the longitudinal and transverse
Langevin coefficients ratio can be written as follows:

κ‖

κ⊥
= ±16π2

(
G00Grr

GkkGpp

(
G00
Gpp

)′
|
(
G00
Gpp

)′
|

)∣∣∣∣
r=r0

T 2

=
(G00Gpp)

′

GkkGpp

(
G00
Gpp

)′ ∣∣∣∣
r=r0

. (11)

After some calculation, one can obtain

κ‖

κ⊥
=
r100 +Ar80 +Br60 + Cr40 +Dr20 + E

ar80 + br60 + cr40 + dr20 + e
, (12)

where we defined the following coefficients:
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A = 5
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1
2kR

2 ,
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,
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2kR

2 ,

b = µR2 ,

c = 1
2 (µ (q1 + q2 + q3) + k (q1q2 + q1q3 + q2q3))R

2 ,

d = kR2q1q2q3 ,

e = −1
2µq1q2q3 . (13)

It is already concluded that κ‖ ≥ κ⊥ is universal for isotropic back-
grounds, where equality holds for v = 0. It is also verified for the STU
model with positive charge and illustrated for some situations summarized
in Tables I, II and III. Without loss of generality, we set R = µ = 1 and
vary black hole charges for three different cases of k = 0, k = 1 and k = −1.
From Table I the case of k = 1, Table II for the case of k = 0 and Table III
for the case of k = −1, we see universal behavior of κ‖

κ⊥
as expected. Here,

we consider some unphysical cases of negative charge and take into account
all possible mathematical situations, however universality holds for all the
cases.

TABLE I

Value of L =
κ‖
κ⊥

for k = 1.

L r0 q1 q2 q3 v L r0 q1 q2 q3 v

1.0000006 0.786 0 0 0 0.001 1.67 0.058 1 1 0 0.1
3 1 0 0 0 1 3.54 0.74 1 1 0 0.9

1.0000008 0.64 1 0 0 0.001 ∞ 1 −1 −1 0 0.1
2.6 0.866 1 0 0 0.9 ∞ 1 −1 0 0 0.99
4.3 1 1 0 0 1 ∞ 1 1 1 −1 0.99
4.7 0.58 10 0 0 0.9 1.0086 0.78 1 −1 −1 0.1
1.01 0.30 10 0 0 0.1 1.69 0.14 1 −1 −1 0.99
16.333 1 −1 −1 0 0.9 1.000086 0.786 1 −1 −1 0.01
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TABLE II

Value of L =
κ‖
κ⊥

for k = 0.

L r0 q1 q2 q3 v L r0 q1 q2 q3 v

1.000001 1.00000025 0 0 0 0.001 1.68 0.07 1 1 0 0.1
∞ 1 0 0 0 1 6.37 1.14 1 1 0 0.9

1.000001 0.786 1 0 0 0.001 1.0067 3.18 −10 −1 0 0.1
5.57 1.359 1 0 0 0.9 49.097 2.76 −1 0 0 0.99
∞ 1 1 0 0 1 50.98 2.59 1 1 −1 0.99
6.56 0.7 10 0 0 0.9 1.008 1.3 1 −1 −1 0.1
1.01 0.3 10 0 0 0.1 48.87 2.77 1 −1 −1 0.99
4.8 1.8 −1 −1 0 0.9 1.00008 1.3 1 −1 −1 0.01

TABLE III

Value of L =
κ‖
κ⊥

for k = −1.

L r0 q1 q2 q3 v L r0 q1 q2 q3 v

1.000001 1.27 0 0 0 0.001 1.69 0.1 1 1 0 0.1
∞ 0 0 0 0 1 10.2 2.06 1 1 0 0.9

1.0000017 1.0000005 1 0 0 0.001 1.01 1.7 −1 −1 0 0.1
9.07 2.29 1 0 0 0.9 96.5 7.2 −1 0 0 0.99
∞ 0 1 0 0 1 98.8 7.09 1 1 −1 0.99
10.8 0.96 10 0 0 0.9 1.01 1.6 1 −1 −1 0.1
1.01 0.33 10 0 0 0.1 96.5 7.2 1 −1 −1 0.99
7.65 2.79 −1 −1 0 0.9 1.01 1.6 1 −1 −1 0.01

Hence, for the positive charges in relativistic regime (in the case of k = 1)
the increasing value of charges and number of charges, which are correspond-
ing to chemical potential of QGP, increase the value of ratio κ‖

κ⊥
.

The higher derivative corrections of the STU model can be found in
Ref. [20]

fk = k − µ

r2
+
r2

R2

∏
i

(
1 +

qi
r2

)
+ c1
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µ2

96r6
∏
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(
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r2

) − ∏i qi(qi + µ)

9R2r4

)
,

H =
3∏
i=1

Hi ,

Hi = 1 +
qi
r2
− c1qi (qi + µ)

72r2 (r2 + qi)
2 , i = 1, 2, 3 , (14)
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where c1 is the small constant parameter corresponding to the higher deriva-
tive terms and a1 is qi-dependent quantity which parameterizes the correc-
tions to the background geometry [26]. In that case the modified horizon
radius is given by the following expression:

rh = r0h +
c1
∏
i

(
1 + qi

r20h

)(∑
q2i −

26r20h
3

∑
qi + 3r40h

)
576R2

[(∏
i

(
1 + qi

r20h

)) 2
3 (1

3

∑
qi − 2r20h

)
−R2

]

+ c1
2
(∏

i

(
1 + qi

r20h

)) 1
3 (13

3

∑
qi − 3r20h

)
+ 3R2

576

[(∏
i

(
1 + qi

r20h

)) 2
3 (1

3

∑
qi − 2r20h

)
−R2

] , (15)

where r0h is the horizon radius without higher derivative corrections. It
should be noted that in order to obtain expression (15), we removed µ by
using fk = 0.

As before, we can calculate components G00, Grr, Gkk and Gpp to obtain
κ‖
κ⊥

and investigate universal behavior κ‖ ≥ κ⊥. Numerically, we find that
the relation κ‖

κ⊥
≥ 1 is valid in the presence of higher order corrections. The

effect of c1 is a reduction of this ratio, for example, in the case of three-
charge black hole with q1 = 106, q2 = q3 = 1, c1 = 0.01, and v = 0.9, we
have κ‖

κ⊥
= 3.8. Hence, we confirmed universal properties of the Langevin

diffusion coefficients in the STU model with higher derivative terms. Already
thermodynamical and statistical analysis of STU black holes have been given
in Ref. [27]. Now, it may be interesting to consider the logarithmically
corrected STU model [28] and investigate its Langevin diffusion coefficients.

We would like to thanks K. Bitaghsir Fadafan for several discussions.
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