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This article aims at analyzing the electro-magnetohydrodynamic
(EMHD) flow of a biviscosity fluid in a peristaltic endoscope and through
a porous medium. Both the inner and outer tubes have sinusoidal wave
traveling down their walls where there is a coupling between the occlusion
of the outer tube and the radius ratio. The analytical solutions are found
under long wavelength and low Reynolds number assumptions. The influ-
ences of the electrical field strength parameter H, Hartmann number M ,
upper limit apparent viscosity coefficient β, Darcy number Da, occlusion φ
and the radius ratio n on the axial velocity w, pressure gradient ∂p

∂z , pres-
sure rise ∆p, and on mechanical efficiency E are discussed through graphs.
The results show that E increases with increasing all parameters except the
Hartmann number. Moreover, the peristaltic pumping regions, the pres-
sure rise for zero flow rate, and the flow rate in the absence of a pressure
rise are graphically discussed.
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1. Introduction

Peristaltic pumping or peristalsis is a fundamental biomechanical mech-
anism when the fluid is transported by a progressive wave of contraction
and expansion of the muscles which pumps this fluid. This phenomenon
is used in the physiological vessels such as oesophagus, stomach, intestines,
sometimes in the ureters, and blood vessels (arteries, veins, capillaries etc.).
Due to the importance of peristalsis, it has become the object of scientific
research, since the first investigation of peristaltic transport for a Newtonian
fluid by Latham [1]. For non-Newtonian fluids and in different geometries,
several researchers have attempted to analyze this type of flows. For exam-
ple, Fung and Yih [3] have studied the peristaltic pumping of a viscous fluid
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in a channel. Srivastava et al. [4] have analyzed the peristaltic transport of
a physiological fluid of variable viscosity in a non-uniform tube and channel.
Abbasi et al. [5] have studied the peristaltic transport of an aqueous solu-
tion of silver nanoparticles with convective heat transfer at the boundaries.
Shahzadi and Nadeem [6] have analyzed the impact of curvature on the
mixed convective peristaltic flow of shear thinning fluid with nanoparticles.
Hayat et al. [7] have investigated the peristaltic mechanism of a compressible
Jeffrey fluid in a circular tube. The interaction of peristaltic transport with
the pulsatile flow of a Maxwell fluid in a tube has been analyzed by Rachid
and Ouazzani [8]. Recently, the effect of an inserted endoscope on peristaltic
pumping has been studied in several articles. Akbar and Nadeem have ana-
lyzed the peristaltic flow of a Jeffrey fluid or of a nanofluid in an endoscope,
respectively [9, 10]. The peristaltic transport of a Newtonian fluid through
a uniform and non-uniform annulus has been presented by Mekheimer [11].
El Misery et al. [12] have examined the effects of an endoscope and variable
viscosity on peristaltic motion. Rachid et al. [13] have analyzed the inter-
action of pulsatile flow and peristaltic transport of a Newtonian fluid in an
endoscope. In all these studies, the endoscope is supposed rigid and uniform.
For a deformable endoscope, Rachid and Ouazzani [14] have examined the
peristaltic flow of a Newtonian fluid when the phases and the mean radius
of the tubes are different.

Microfluidics plays an essential role in science and technology of ma-
nipulating and controlling fluids. It is very attractive for both academic
researchers and industrials because of the wide range of applications such
as electroosmosis micropumps [15–17], electrohydrodynamic micropumps
[18–20] and electro-magnetohydrodynamic (EMHD) micropumps [21–23].
Recently, some researchers have studied the effect of a magnetic field (MHD)
on peristaltic transport. For example, Eldesoky [24] has investigated the in-
fluence of slip conditions, body acceleration and a magnetic field on unsteady
peristaltic flow through a porous medium in an artery. The MHD peristaltic
transport of the Eyring–Powell fluid with heat/mass transfer, wall proper-
ties and slip conditions has been studied by Hina [25]. Hayat and Hina
[26] have studied the influence of wall properties on the MHD peristaltic
flow of a Maxwell fluid with heat and mass transfer. Another investigations
dealing with the impact of magnetic field on peristaltic pumping are cited
in Refs. [27–30]. In all these investigations, the electric field has not been
taken into account. In this paper, we analyze the influences of a magnetic
and an electric fields of a biviscosity fluid in a peristaltic endoscope through
a porous medium. We suppose that the occlusion of the outer tube is coupled
with the mean radius of the endoscope. The impact of physical parameters
on pumping characteristics are discussed through graphs.
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2. Formulation and analysis

Let us consider the EMHD flow of an incompressible and electrically con-
ducting biviscosity fluid with density ρ and electrical conductivity σ through
the gap between two coaxial peristaltic tubes. Both the inner and the outer
tubes have sinusoidal waves traveling down their walls (cf. Fig. 1).

Fig. 1. Geometry of the problem.

In the fixed frame (R̄, θ, Z̄), the geometry of the walls surfaces are de-
scribed as

R̄2 = a+ b sin
2π

λ

(
Z̄ − ct̄

)
,

R̄1 = n R̄2 = na+ nb sin
2π

λ

(
Z̄ − ct̄

)
, 0 < n < 1 , (1)

where a is the radius of the outer tube at inlet, b is the wave amplitude, λ is
the wavelength, c is the propagation velocity, t̄ is the time.

The flow is driven by the Lorenz force, ~J× ~B in the ez-direction generated
by the interaction between the magnetic field ~B(0, B0, 0) and the electric
field ~E(E0, 0, 0), where ~J = σ( ~E + ~̄V × ~B) denotes current density and
~̄V (Ū , V̄ , W̄ ) is the vector velocity in the fixed frame.

The constitutive equations for incompressible biviscosity fluids [31, 32]
are defined as follows:

τ =

{
2
(
µβ + py/

√
2π
)
eij , π ≥ πc ,

2
(
µβ + py/

√
2πc

)
eij , π < πc ,

(2)

where µβ is the plastic viscosity of the fluid, py is yield stress and π = eij ,
eij is the (i, j) is the component of deformation rate with

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (3)
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We introduce the following non-dimensional parameter β = µβ
√

2πc/py
which denotes the upper limit apparent viscosity coefficient. For the ordinary
Newtonian fluid, py = 0.

In the fixed frame (R̄, Z̄), the flow is unsteady but if we choose moving
coordinates (r̄, z̄), then the flow can be treated as steady. The coordinates
frames are related through

r̄ = R̄ ; z̄ = Z̄ − ct̄ ; p̄ = P̄ ; (4)

ū(r̄, z̄) = Ū
(
R̄, Z̄ − ct̄

)
; w̄ (r̄, z̄) = W̄

(
R̄, Z̄ − ct̄

)
− c , (5)

where (ū, w̄) are the radial and axial components of velocity in the wave
frame.

Taking into account the magnetic Lorentz force, the equations governing
the EMHD fluid flow in the wave frame are:

∂ū

∂r̄
+
ū

r̄
+
∂w̄

∂z̄
= 0 , (6)

ρ

[
ū
∂ū

∂r̄
+ w̄

∂ū

∂z̄

]
= −∂p̄

∂r̄
+

1

r̄

∂

∂r̄

(
r̄S̄r̄r̄

)
+
∂S̄r̄z̄
∂z̄
− µ

k0
ū , (7)

ρ

[
ū
∂w̄

∂r̄
+ w̄

∂w̄

∂z̄

]
= −∂p̄

∂z̄
+

1

r̄

∂

∂r̄

(
r̄S̄r̄z̄

)
+
∂S̄z̄z̄
∂z̄

+σE0B0 −
(
σB2

0 +
µ

k0

)
(w̄ + 1) , (8)

where S̄ is the extra stress tensor, p̄ is the pressure and k0 is the permeability
of the porous medium.

Here, we use the following dimensionless quantities:

z =
z̄

λ
; r =

r̄

a
; t =

ct̄

λ
; u =

λū

ac
; w =

w̄

c
; p =

a2p̄

µβλc
;

Q =
Q̄

πca2
; q =

q̄

πca2
; S =

aS̄

µβc
; φ =

b

a
; δ =

a

λ
;

Da =
k0

a2
; Re =

ρac

µβ
; M = aB0

(
σ

µ

)1/2

; H =
aE0

c

(
σ

µ

)1/2

, (9)

where Q and q are the flow rates in the fixed and in the wave frames, re-
spectively. δ is the dimensionless wave number, Re is the Reynolds number,
Da is the Darcy number, M is the Hartmann number, H is the electrical
field strength parameter, φ is the amplitude ratio with 0 < φ < 1.
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Using the above non-dimensional quantities and under the assumptions
of long wavelength approximation (i.e., δ � 1 or λ� a) and low Reynolds
number (i.e., Re→ 0), the continuity equation is satisfied, and the equations
of motion (6)–(8) can be reduced to

∂p

∂r
= 0 ,

1

r

∂

∂r

(
r
∂w

∂r

)
−N2(w + 1) = α

∂p

∂z
− αHM ,

∂u

∂r
+
u

r
+
∂w

∂z
= 0 ;

(10)

here, α =
1

(1 + 1
β )

and N2 = α

(
M2 +

1

Da

)
.

The boundary conditions which describe the velocity are{
w = −1 at r = r1 = n+ nφ sin(2πz) ,

w = −1 at r = r2 = 1 + φ sin(2πz) .
(11)

From the expression of r1, it appears clearly that there is a coupling between
the occlusion of the outer tube φ and the radius ratio n =

r1

r2
.

Integrating (10) and using the boundary conditions (11), we obtain the
following solution:

w(r, z) = −1 +

α

[
∂p
∂z −MH

]
N2

(
A1I0(Nr) +A2K0(Nr)− 1

)
(12)

with

A1 =
K0(Nr2)−K0(Nr1)

I0(Nr1)K0(Nr2)− I0(Nr2)K0(Nr1)
,

A2 =
I0(Nr1)− I0(Nr2)

I0(Nr1)K0(Nr2)− I0(Nr2)K0(Nr1)
, (13)

where I0 is the modified Bessel function of the first kind of the order of 0,
K0 is the modified Bessel function of the second kind of the order of 0.

The instantaneous volume rate of flow in the fixed frame is given by

Q(Z, t) = 2

r2∫
r1

WR dR = q +
(
r2

2 − r2
1

)
= q +

(
1− n2

)
r2

2 . (14)
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We calculate the time-averaged flow rate as follows:

Q =

1∫
0

Q(Z, t) dt = q +
(
1− n2

)(
1 +

φ2

2

)
, (15)

where q is the volume rate of flow in the wave frame, and it is given by

q = 2

r2∫
r1

wr dr . (16)

Introducing velocity (12) into (16), we find

q =
αA6

N3

[
∂p

∂z
−MH

]
−
(
r2

2 − r2
1

)
=
αA6

N3

[
∂p

∂z
−MH

]
−
(
1− n2

)
r2

2 (17)

with

A3 = r2I1(Nr2)− r1I1(Nr1) ; A4 = r1K1(Nr1)− r2K1(Nr2) ;

A5 = r2
1 − r2

2 ; A6 = 2A1A3 + 2A2A4 +NA5 .
(18)

Using (14) and (15), from Eq. (17), we find the pressure gradient as
follows:

dp

dz
=
N3
[
Q+

(
1− n2

) (
r2

2 − 1− φ2

2

)]
αA6

+MH . (19)

The pressure rise ∆p across one wavelength, in its non-dimensional form,
is given by

∆p =

1∫
0

∂p

∂z
dz . (20)

Introducing (19) into (20), we obtain the following expression of the pressure
rise:

∆p =
N3

α

1∫
0

Q+
(
1− n2

) (
r2

2 − 1− φ2

2

)
A6

dz +HM . (21)

The mechanical efficiency is defined as the ratio between the average rate
per wavelength at which work is done by the moving fluid against a pressure
head and the average rate at which the walls do work on the fluid [33]. We
obtain the expression of the mechanical efficiency as follows [34]:

E =
Q∆p[

∆p (r2 − r1)2
(z=0) + F (i) + F (o) + 2I

] , (22)



Electro-magnetohydrodynamic Peristaltic Pumping of a Biviscosity Fluid . . . 1521

where F (o) and F (i) are the frictional forces on outer and inner tubes across
one wavelength, respectively. They are given by

F (o) =

1∫
0

−r2
2

∂p

dz
dz , (23)

F (i) =

1∫
0

−r2
1

∂p

dz
dz = n2

1∫
0

−r2
2

∂p

dz
dz = n2F (o) (24)

and

I =

1∫
0

r1r2
∂p

∂z
dz = n

1∫
0

r2
2

∂p

∂z
dz = −nF (o) . (25)

Then the mechanical efficiency becomes

E =
Q∆p[

∆p ((1− n)r2)2
(z=0) + (n− 1)2F (o)

] . (26)

3. Results and discussions

The graphical results of the peristaltic characteristics versus different
embedded parameters and the physical interpretation of these results are
presented in this section. Before, we note that when β → ∞, Da → ∞,
H = 0, M = 0 and n = 0, we find the results of Shapiro et al. [33].
Figures 2 (a)–(f) display the variations of the axial velocity w with respect
to the radial r. These figures show that w increases with increasing the
electrical field strength parameter H, Hartmann number M , upper limit
apparent viscosity coefficient β, Darcy number Da, occlusion φ, while it
decreases with the increase in the radius ratio n.

The pressure gradient
∂p

∂z
has been plotted in Figs. 3 (a)–(f). First, these

figures show that
∂p

∂z
is small in the large gap between the two tubes, whereas

it is big in the narrow part. Figures 3 (c), (d) show that Da and β reduce the
pressure gradient. From Figs. 3 (a), (b), (e), one can observe that an increase
in H, M and n enhance the pressure gradient. It can be analyze from
Fig. 3 (f) that the occlusion increases the pressure gradient in the narrow
region, while we observe the opposite behavior in the large region.

The influences of the physical parameters on pressure rise ∆p versus the
time-averaged flow rateQ are presented in Figs. 4 (a)–(f). From Figs. 4 (a), (b),
it can be seen that for different values of E and φ, respectively, the curves
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Fig. 2. Axial velocity ∂p
∂z = 2 (a) for different values of H when M = 5, Da = 0.5,

β = 0.5, n = 0.3 and φ = 0.0.35; (b) for different values of M when H = 2,
Da = 0.5, β = 0.5, n = 0.3 and φ = 0.5; (c) for different values of Da when H = 2,
M = 5, β = 0.5, n = 0.3 and φ = 0.35; (d) for different values of β when H = 2,
M = 5, Da = 0.5, n = 0.3 and φ = 0.35; (e) for different values of n when H = 2,
M = 5, Da = 0.5, β = 0.5 and φ = 0.5; (f) for different values of φ when H = 2,
M = 5, Da = 0.5, β = 0.5 and n = 0.3.
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Fig. 3. Pressure gradient for Q = −2 (a) for different values of H when M = 5,
Da = 0.5, β = 0.5, n = 0.3 and φ = 0.0.35; (b) for different values of M when
H = 2, Da = 0.5, β = 0.5, n = 0.3 and φ = 0.5; (c) for different values of Da when
H = 2, M = 5, β = 0.5, n = 0.3 and φ = 0.35; (d) for different values of β when
H = 2, M = 5, Da = 0.5, n = 0.3 and φ = 0.35; (e) for different values of n when
H = 2, M = 5, Da = 0.5, β = 0.5 and φ = 0.5; (f) for different values of φ when
H = 2, M = 5, Da = 0.5, β = 0.5 and n = 0.3.
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intersected in the co-pumping region (∆p < 0) i.e., the pumping region, the
flow rate Q0 for zero pressure rise and the pressure rise ∆p0 for zero flow
rate increase simultaneously when H and φ increase. Figures 4 (c)–(f) show
that for different values of n,M , β and Da, the curves are intersecting in the
pumping region (∆p > 0). One can see that ∆p0 increases and Q0 decreases
with increasing n and M , while the opposite behavior is observed versus β
and Da.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

−10

0

10

20

30

40

50

60

70

80

Q

∆
p

 

 

H=1

H=2

H=3

(a)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

100

150

Q

∆
p

 

 

φ=0.3

φ=0.35

φ=0.4

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

0

20

40

60

80

100

Q

∆
p

 

 

n=0.25

n=0.3

n=0.35

(c)

(a) (b) (c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

0

20

40

60

80

100

Q

∆
p

 

 

M=4

M=5

M=6

(d)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−40

−20

0

20

40

60

80

100

120

140

Q

∆
p

 

 

β=0.2

β=0.5

β=5

(e)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−20

0

20

40

60

80

100

Q

∆
p

 

 

Da=005

Da=0.1

Da=0.5

(f)

(d) (e) (f)

Fig. 4. Pressure rise (a) for different values of H when M = 5, Da = 0.5, β = 0.5,
n = 0.3 and φ = 0.0.35; (b) for different values of φ when H = 2, M = 5, Da = 0.5,
β = 0.5 and n = 0.3; (c) for different values of n when H = 2, M = 5, Da = 0.5,
β = 0.5 and φ = 0.5; (d) for different values of M when H = 2, Da = 0.5, β = 0.5,
n = 0.3 and φ = 0.5; (e) for different values of β when H = 2, M = 5, Da = 0.5,
n = 0.3 and φ = 0.35; (f) for different values of Da when H = 2, M = 5, β = 0.5,
n = 0.3 and φ = 0.35.

In order to investigate the mechanical efficiency of the pump in the peri-
staltic pumping region, we recall that this region is defined when the flow
rate Q and the pressure rise ∆p are positive. It extends from zero flow to
the maximum flow rate Q0 i.e., zero pressure rise. From Eq. (20), we find
the expressions of ∆p0 and Q0 as follows:

∆p0 =
N3

α
I1 +HM ,

Q0 = − 1

I2

(
I1 +

αMH

N3

) (27)
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with

I1 =

1∫
0

(
1− n2

) (
r2

2 − 1− φ2

2

)
A6

dz ,

I2 =

1∫
0

1

A6
dz .

Plots in Fig. 5 illustrate ∆p0 and Q0 over the whole possible range of
the occlusion i.e., φ = 0 (no peristalsis) to φ = 1 (complete occlusion).
This figure reveals that for φ = 0 and ∆p0 = 0, there is no flow Q0 = 0.
In addition, when φ → 1, Q0 is maximum i.e., all the fluid contained in
one wavelength must be transported at speed c, whereas ∆p0 →∞. When
0 < Q < Q0, the peristaltic wave serves as a pump in the range where the
mean flow is in the direction of the pressure rise. Figure 5 also shows that
the flow rate Q0 for zero pressure rise decreases with the increase in radius
ratio n.
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Fig. 5. Flow rate θ0, for zero pressure rise, and pressure rise ∆p0, for zero flow
rate, both as functions of amplitude ratio φ; effect of n on θ0 when H = 2, M = 5,
Da = 0.5 and β = 0.5.

In Figs. 6 (a)–(f), we display the behavior of the mechanical efficiency E
versus the ratio of time-averaged flow rate Q to Q0 (i.e. Q

Q0
). It is observed

that E = 0 for Q
Q0

= 0 (i.e., no flow) and for Q
Q0

= 1 or Q = Q0 (i.e., no
pressure rise ∆p = 0). It can also be seen that the mechanical efficiency E
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increases from zero to a maximum in a certain value of the ratio Q
Q0

, then
it decreases to zero. In addition, the mechanical efficiency E follows the
same variation of the flow rate Q in the free-pumping region (∆p = 0) i.e.,
E increases with increasing H, φ, n, β and Da, while it decreases with the
increase of M .
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Fig. 6. Mechanical efficiency (a) for different values of H when M = 5, Da = 0.5,
β = 0.5, n = 0.3 and φ = 0.0.35; (b) for different values of φ when H = 2, M = 5,
Da = 0.5, β = 0.5 and n = 0.3; (c) for different values of n when H = 2, M = 5,
Da = 0.5, β = 0.5 and φ = 0.5; (d) for different values ofM when H = 2, Da = 0.5,
β = 0.5, n = 0.3 and φ = 0.5; (e) for different values of β when H = 2, M = 5,
Da = 0.5, n = 0.3 and φ = 0.35; (f) for different values of Da when H = 2, M = 5,
β = 0.5, n = 0.3 and φ = 0.35.

In Figs. 7 (a)–(c), we plot the results of peristaltic flow for a biviscosity
fluid compared to a Newtonian fluid in the cases of deformable, rigid and
without endoscope. This comparison shows that the pressure gradient, the
pumping region and the mechanical efficiency follow the same variation.
These pumping characteristics are greater for a biviscosity fluid than those
for a Newtonian fluid. It can also be seen that these physical quantities
are smaller in the case of absence of an endoscope than in the case when
an endoscope is inserted. Finally, one can observe that the deformation of

endoscope walls reduces
∂p

∂z
∆p and the pumping region.
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Fig. 7. Pressure gradient, pressure rise and mechanical efficiency for the Newtonian
and biviscosity fluids in cases without endoscope, with rigid one or deformable one
when H = 0.5, M = 5, β = 5 and φ = 0.4.

4. Conclusions

The present investigation discusses the effects of electric and magnetic
fields on peristaltic pumping of a biviscosity fluid between two coaxial peri-
staltic tubes and through porous media. The problem has been solved under
long wavelength and low Reynolds number assumptions. It is observed that
the electrical field strength parameter H, upper limit apparent viscosity co-
efficient β, Darcy number Da, occlusion φ and the radius ratio n enhance
the pumping and the mechanical efficiency, while the Hartmann number M
reduces these pumping characteristics. Moreover, the comparison with a
Newtonian fluid in the cases of absence of an endoscope and in the presence
of a rigid or a deformable one has been analyzed in this study.
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