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Complex dynamical structures inherent in degenerate optical paramet-
ric oscillator (DOPO) system are studied in detail. The system under
consideration is actually the temporal part of the original DOPO system.
A host of fixed points and the corresponding route to chaos are analysed.
In the process, several forms of attractors and bifurcation patterns are seen.
The stability zones are enumerated with the help of the bi-parametric Lya-
punov plots or shrimp structures. Lastly, we have analysed the behaviour
of two such coupled systems for the analysis of different modes of syn-
chronization. The coupling is chosen in different ways. One is the direct
one, the other through quorum sensing and lastly through delayed quo-
rum sensing. It is observed that introduction of delay effects the time to
achieve synchronization. In each case, the stability and other properties
are analysed.
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1. Introduction

Chaotic behaviour of nonlinear systems has drawn wide attention over
the last few decades. Examples of such systems are now found in the domain
of physical sciences, chemical engineering, economics and many more [1–5].
An important class of problems occurs in the field of nonlinear optics which
has become a subject of paramount importance due to its application in the
communication technology. Optical parametric oscillators has also grabbed
the attention due to its broadly tunable sources of highly coherent radiation.
Subharmonic conversion inside a resonant cavity pumped by an external
laser is called an optical parametric oscillator (OPO), when the subharmonic
field has infinite intensity [6]. The elementary process which takes place in
the OPO is the absorption of one photon of pump field at frequency 2ω and
emission of two photons at frequencies ω1 and ω2 with energy conversion
law 2ω = ω1 + ω2. When ω1 = ω2, the system is called degenerate optical
parametric oscillator or DOPO. Different field polarization makes the two
beams separable. DOPO finds its applications in various fields:

(1) As a model system for the generation of non-classical states of light
[7, 8].

(2) It was demonstrated that light squeezing can occur between the two
emitted beams [9, 10].

(3) It also acts as a simple model for a non-equilibrium phase transi-
tion [11].

In this context, researchers are studying pattern formation, spatial soli-
tons, localized states in DOPO [12–15]. The existence of domain wall in such
systems has been analysed and dissipative localized structures have been
studied. In general, an optical parametric oscillator is obtained by filling
an optical cavity with a nonlinear quadratic medium. They have variation
both with respect to space and time. The pattern formation which occurs
in hydrodynamics, chemistry, biology can be observed in these systems. It
is interesting to note that such systems include both classical and quantum
effects. The DOPO is actually effective as a laser wavelength doubler which
is useful for pumping [16].

Another interesting aspect of these systems is that on the one hand, they
support formation of soliton but in different parameter domain, they show
instability and chaos. Important work has been done by Oppo et al. [12]
and Stalinuas et al. [15] regarding their spatio-temporal behaviour. But
if spatial variations are neglected, one still obtains important dynamical
features. Here, in this communication, we have analysed the temporal evo-
lution of such a degenerate optical parametric oscillator system and have
visualized different routes to chaos and bifurcation. The stability zones are
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analysed with the help of bi-parametric plots of the Lyapunov exponents.
In the next stage, we have coupled two such systems for obtaining synchro-
nization. Synchronization is another highly researched topic for the last
few decades [17, 18]. Two types of synchronization exits in nonlinear dy-
namic systems — chaotic and nonchaotic. Communication through periodic
synchronization and its security has been explored by various researchers
[19–21]. Quasi-periodic synchronization of dynamical systems was studied
by Ramaswamy [22]. To achieve synchronization, two types of couplings
have been used — one through the direct process and the other through
quorum sensing. In each case, the features of the coupled system are stud-
ied and condition for synchronization is established.

2. Basic dynamical behaviour of DOPO

Degenerate optical parametric oscillator is actually the temporal part
of the laser equation describing the cavity dynamics occurring in nonlinear
optics. Let A1 and A0 denote the complex amplitudes of subharmonic and
fundamental mode of the field, and ∆1 and ∆0 denote the detuning param-
eters, γ is the reduced decay rate of the fundamental mode and EA is the
input field amplitude chosen as real and positive. Then the DOPO can be
written as

dA1

dt
= −(1 + i∆1)A1 +A∗1A0 ,

dA0

dt
= −(γ + i∆0)A0 + EA −A2

1 . (2.1)

If we set A1 = x+ iy and A0 = u+ iv, then (2.1) reduces to

dx

dt
= −x+∆1y + xu+ yv ,

dy

dt
= −∆1x− y − yu+ xv ,

du

dt
= −γu+∆0v − x2 + y2 + EA ,

dv

dt
= −γv −∆0u− 2xy . (2.2)

Before proceeding to numerical analysis, the simple fixed point can be
obtained as

x = y = 0 ; u =
γEA

∆2
0 + γ2

; v =
∆0EA

∆2
0 + γ2

. (2.3)
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Another one is

v = 0 , u2 = ∆2
0 + 1 , (2.4)

2x2 = (EA − γu) ±
√

(EA − γu)2 +∆2
0u

2 , (2.5)

−2y2 = (EA − γu) ∓
√

(EA − γu)2 +∆2
0u

2 . (2.6)

Similarly, one can have

u = 0 , v2 = ∆2
1 + 1 (2.7)

with the corresponding complicated expression for x and y.
As far as stability is concerned, these analytic expressions do not con-

vey much except for the first fixed point. The characteristic roots of the
corresponding Jacobian are

λ = −γ ± i∆0 , (2.8)

λ+ 1 = ±
(
u2 − v2 + ∆2

1

)1/2
, (2.9)

where u, v are given in Eq. (2.3), which shows the existence of the Hopf
bifurcation and stability depending on parameter values. Such a treatment
is not feasible for the other set given in Eq. (2.6), so from here, we proceed
numerically.

Numerical integration of the system with the Runge–Kutta algorithm
leads to the form of the attractors as shown in figure 1 (a)–(d), where differ-
ent two-dimensional projections are exhibited.

The phase-space structure depends crucially on the input field ampli-
tude EA. For example, in figure 2 (a), we show a single period orbit for
EA = 5.4, but for a slight change of value of EA = 5.5, we get the multi-
periodic structure in figure 2 (b). But for EA = 6.0, we get back the full
attractor as shown in figure 2 (c) which further enlarges in size when the
value of EA = 8.0, as depicted in figure 2 (d). To analyse the stability, the
bifurcation diagrams with respect to different parameters of the system and
the corresponding Lyapunov exponents are also calculated. The bifurcation
and the corresponding variation of the Lyapunov exponents with respect to
parameter γ are shown in figures 3 (a) and (b), where all the exponents are
negative. The situation changes when the varying parameter is chosen to
be ∆0. In this case, a small positive value is attained. The corresponding
situations for variations with ∆0 are given in figures 3 (c) and (d). Lastly,
the most important parameter, EA, is taken into account and the bifurca-
tion diagram, and the Lyapunov exponent variation with respect to EA are
depicted in figures 3 (e) and (f).
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Fig. 1. Attractors arising from Eq. (2.2).
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Fig. 3. Bifurcation diagrams and Lyapunov exponents w.r.t. different system para-
meters.

3. Stability properties

In the previous section, for DOPO system, we have encountered the ex-
istence of quite a few number of fixed points, both trivial and non-trivial.
As the system depends on a large number of parameters, the eigenvalues
corresponding to these fixed points can always change their character and
hence the type of stability properties. Actually, the local stability can be
ascertained by these eigenvalues but the stability as a whole can only be esti-
mated through the computation of the Lyapunov exponents. In this section,
we report on the computational results of the Lyapunov exponents for the
original and various forms of the coupled type DOPO equations. The system
stability may reveal different scenario depending on the choice of parameter
values. The bifurcation structure indicates a change of qualitative behaviour
when system parameters are varied. Recently, a new type of bifurcation
structures are reported in many types of discrete and continuous nonlinear
dynamical systems, when two or more control parameters are varied. The
parameter-planes show iso-periodic stable structures which are referred to as
shrimp-shaped domains (SSDs), with a variety of bifurcation cascades and
organization rules. Many researchers have unveiled the detailed bifurcation
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structures in the parameter-planes of different nonlinear systems [26–30].
The periodic islands in the chaotic domain in the bi-parametric plots are
observed by considering the largest Lyapunov exponent. Such plots are first
done for the single DOPO system and with various combinations of system
parameters. In each case, an array of 500× 500 points has been considered.
The results are shown in figure 4 (a)–(f). In figure 4 (a), we have the param-
eter space of EA versus γ. It shows chaotic islands mainly for higher values
of EA, although we can observe an island for low EA and γ. The periodic
region is restricted to lower values of EA only. The plot of ∆1 versus γ
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Fig. 4. Bi-parametric plots of different combination of parameters of the system
given by Eq. (2.2).
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(figure 4 (b)) shows mainly periodic regimes, while ∆0 versus γ (figure 4 (c))
shows the dominance of chaotic regions. ∆1 versus EA (figure 4 (d)) shows
chaotic dynamics after EA = 12.6, while in ∆0 versus EA (figure 4 (e))
chaotic islands appear after ∆0 = 0.3 for any value of EA. ∆1 versus ∆0

(figure 4 (f)) shows that for lower values of ∆0, periodicity occurs thereafter
giving rise to chaoticity which gradually decreases for higher values of ∆0.

Next, the case of coupled systems (the details of which is discussed in
Section 4) is considered. Firstly, two DOPO systems are directly coupled
to one another through a coupling constant of certain strength. The system
variables are directly involved in the process and the dynamics of the sec-
ond system becomes dependent on the first. Next, quorum sensing (QS) is
inspected which is a sort of indirect coupling because interaction takes place
through another dynamical environment. To critically understand the onset
of periodic and chaotic motions in this coupled system, one needs to analyse
at least the first four Lyapunov exponents in detail for different parameter
variations. This is best described by bi-parametric plots as they indicate the
parameter regions where synchronization occurs by taking into account the
transverse Lyapunov exponent. These are given in figure 5 (a)–(d) where the
synchronization takes place due to direct coupling. The governing system
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of equations in this case is given by Eq. (4.1). In this case of coupling, we
have chosen four pairs of parameters. In figure 5 (a), for EA versus γ, we
observe that the transverse Lyapunov exponent becomes negative i.e., syn-
chronization sets in completely for EA = 8.0. For ∆1 versus γ (figure 5 (b)),
synchronization occurs mainly for lower values of ∆1 and γ. Plot of ∆1

versus ∆0 (figure 5 (c)) shows scattered islands of unsynchronized state in
the synchronized basin. Lastly, in κ versus γ (figure 5 (d)), we see that in
the region 0.04 < κ < 0.6, we have the synchronized regime.

In the second case, the governing equations indicating quorum sensing
synchronization are described by Eq. (4.2). The plots for quorum sensing
coupling are shown in figure 6 (a)–(d). In this case, we have also chosen four
pairs of parameters to depict the stability of synchronization and observed
that all of them indicate a rich form of dynamics. In the first case of EA

and γ (figure 6 (a)), we can see mostly synchronized regions. The same
is for the case of ∆1 versus γ (figure 6 (b)) where we see few islands of
unsynchronized state. The effect of κ is depicted in figures 6 (c) and (d).
The black/blue regions indicate the totally synchronized state of the two
systems.
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4. Synchronization of DOPO systems

In this section, behaviour of two coupled DOPO systems is studied to
observe the phenomenon of synchronization. Synchronization of chaotic sys-
tems is very intriguing and displays interesting results when nonlinear optical
systems are involved. Here, one of the DOPO systems is considered to be the
drive and a similar one as the response system. We know that two systems
can be coupled in various ways. Firstly, we consider the case when the two
systems are directly coupled to one another through a coupling constant of a
certain strength. The system variables gets directly involved and one system
governs the dynamics of the other. The governing equations can be written
as following when two variables have been engaged in coupling process:

dx

dt
= −x+∆1y + xu+ yv ,

dy

dt
= −∆1x− y − yu+ xv ,

du

dt
= −γu+∆0v − x2 + y2 + EA ,

dv

dt
= −γv −∆0u− 2xy ,

dp

dt
= −p+∆1q + pr + qs− κ(p− x) ,

dq

dt
= −∆1p− q − qr + ps− κ(q − y) ,

dr

dt
= −γr +∆0s− p2 + q2 + EA ,

ds

dt
= −γs−∆0r − 2pq , (4.1)

where κ is the coupling constant. One achieves a synchronized state when
two systems are coupled in this form and the results of error plot of [x(t) −
p(t)] are illustrated in figure (7). After synchronization as both the systems
are behaving in the similar way, when we plot the phase space with variables
as q versus x, an attractor given in figure (8) shows up.

Next, we have considered the coupling in a different way — namely
quorum sensing (QS). In nature, it is seen that communication through
synchronization between individual elements does not occur directly, but
rather through a dynamical environment [23]. The QS is quite common
in oscillator systems with homogeneous environment and may be observed
in heterogeneous environment too. Bacteria, for instance, produce, release
and sense signalling molecules which can diffuse in the environment and are
used for the population coordination. This quorum sensing mechanism [24]
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is believed to play a key role in bacterial infection, bioluminescence and
biofilm formation [25]. The coupling of DOPO systems via quorum sensing
gives the following set of equations:

dx

dt
= −x+∆1y + xu+ yv − κ(z − x) ,

dy

dt
= −∆1x− y − yu+ xv − κ(w − y) ,
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du

dt
= −γu+∆0v − x2 + y2 + EA ,

dv

dt
= −γv −∆0u− 2xy ,

dp

dt
= −p+∆1q + pr + qs− κ(z − p) ,

dq

dt
= −∆1p− q − qr + ps− κ(w − q) ,

dr

dt
= −γr +∆0s− p2 + q2 + EA ,

ds

dt
= −γs−∆0r − 2pq ,

dz

dt
= k′(x− 2z + p)/2 − gz ,

dw

dt
= k′(y − 2w + q)/2 − gw . (4.2)

Two systems get coupled via (z, w) which refer to the indirect coupling. Inte-
grating again numerically, synchronization between the two systems coupled
through quorum sensing, is achieved. The error plot is shown in figure 9 and
the projection of the attractor obtained by plotting q versus x is shown in
figure 10. One may note that, in this case, the synchronization takes a longer
time to set in.
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Fig. 9. Error dynamics of coupled DOPO system through quorum sensing.

Exploring further with quorum sensing synchronization, the effect of
delay in the coupling is considered. This can point to the condition, where
the effect of coupling, which is indirect, is occurring after a certain time
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span. The equations in this case can be written as:

dx

dt
= −x+∆1y + xu+ yv − κ(z(t− τ) − x) ,

dy

dt
= −∆1x− y − yu+ xv − κ(w(t− τ) − y) ,

du

dt
= −γu+∆0v − x2 + y2 + EA ,

dv

dt
= −γv −∆0u− 2xy ,

dp

dt
= −p+∆1q + pr + qs− κ(z(t− τ) − p) ,

dq

dt
= −∆1p− q − qr + ps− κ(w(t− τ) − q) ,

dr

dt
= −γr +∆0s− p2 + q2 + EA ,

ds

dt
= −γs−∆0r − 2pq ,

dz

dt
= k′(x− 2z + p)/2 − gz ,

dw

dt
= k′(y − 2w + q)/2 − gw . (4.3)

The delay is associated with the variables which contribute to the indirect
coupling, namely, z and w. The system is first run with τ = 0.0 and then
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with τ = 0.5. The observations are shown in figure 11. It is interesting to
note that synchronization is achieved in both cases, but with τ = 0.5 the
synchronization sets in much earlier in comparison to τ = 0.0. This may
be due to the fact that delay acts like a feedback in optical systems which
induces a control-like effect in the process.
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Fig. 11. Synchronization with delayed quorum sensing of two DOPO systems.

5. Conclusion

In the present communication, the complex dynamics underlying a de-
generate optical parametric oscillator system is analysed by considering only
the temporal behaviour of the original partial differential equations. The do-
main of the equation, nonlinear optics, though is a highly researched field
yet very few work can be found dealing with their stability and synchro-
nization. Our analysis reveals the inner hidden properties of such systems
and can be of use for actual practical purposes. Rich chaotic dynamics is
exhibited in such systems and these properties get unfolded through phase
space diagrams, bifurcations and the Lyapunov exponents. The entire pa-
rameter region is explored for the stability analysis through the help of
bi-parametric plots indicating the actual regions for the possibility of syn-
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chronization. Since nonlinear optics is related to communication process,
such analysis can turn useful for actual data transmission and signal pro-
cessing. The various modes of coupling hold relevance in various biological
processes. One such mode is the synchronization through quorum sensing
which indicates interaction via dynamical environment.
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