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This research addresses the chaotic synchronization of an uncertain
chaotic system as the master system with multiple chaotic systems as slave
systems, simultaneously. Adaptive control and parameter estimation laws
based on the hybrid modified projective synchronization (HMPS) method
are derived to synchronize the states of a master chaotic system with a
proportional rate of their corresponding states from multi-slave chaotic sys-
tems. The feasibility and stability of the proposed scheme are analytically
proved by means of the Lyapunov stability theorem. Furthermore, the va-
lidity of the proposed HMPS method and the theoretical discussions are
verified by numerical simulations. The simulation results confirm the effec-
tiveness of the proposed method.
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1. Introduction

Chaos phenomenon usually appears in a nonlinear dynamical system un-
der some special circumstances. Sensitivity to the initial conditions, various
unstable periodic orbits and rich frequencies are three important properties
of chaotic systems, which persuade studying control and synchronization
of these dynamical systems. Chaos exists in a lot of real world dynamical
systems. Furthermore, many practical application in secure communication
and data encryption arise which benefit some sort of projective synchroniza-
tion method, such as secure communication in [1, 2] and image encryption
in [3].

Since the introductory work by Pecora et al. [4] for synchronization of
chaotic systems, the problem of synchronization of a chaotic system with
another chaotic system by means of designing an appropriate controller has
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become a challenging research topic. As a result, various synchronization
schemes have been presented by researchers including active synchronization
schemes [5, 6], adaptive schemes [7–9], sliding mode schemes [10–12], impul-
sive schemes [13, 14] and projective schemes [15–18]. Among these primary
methods, projective synchronization methods have attracted considerable
attention due to the dependency of the system errors to a scaling factor λ.
Easy implementation and efficiently in practical applications are other ben-
efits of the projective methods. Moreover, many types of synchronization
approaches are a typical generalization of projective schemes. When scal-
ing factor λ is considered as 1, the method can also be called as complete
synchronization and if λ = −1, it gives the anti-synchronization scheme.
Furthermore, modified projective synchronization [11, 19], function projec-
tive synchronization [20, 21], generalized projective synchronization [17, 22]
and lag projective synchronization [23] methods are some of the projective
related methods.

A master–slave synchronization task, in general, consists of a slave chaotic
system, which has to force the behavior of its state variables to follow the
motion trajectories of a master system state variables. This goal can be re-
alized by means of designing an appropriate feedback controller. Due to its
importance in science and industry, many researchers devoted their inves-
tigations to develop efficient controllers in order to synchronize two chaotic
systems. Readers can refer to references [4–18] for more details. However,
the problem of chaos synchronization between a chaotic system as master
system and multiple slave chaotic systems is rarely studied. In addition,
controlling the behavior of a chaotic system with multiple chaotic systems
provides a more accurate synchronization scheme than other master–slave
synchronization methods. Therefore, the main focus of this paper is to ad-
dress this subject.

There are few works devoted to the synchronization between multiple
chaotic systems. In [24], a task-oriented approach was proposed to control
a master manipulator arm and multi-slave arms, each of which has six or
more degrees of freedom. They have also addressed the controlling prob-
lem of a single-master multi-slave manipulators via virtual internal model
(VIM) in [25]. Controlling the behavior of a gyroscope mechanical system as
a master with multiple slave nonlinear gyroscope systems is another exam-
ple, which is introduced in [26] using the mechanics fundamentals. Multi-
synchronization of two chaotic systems is investigated in [27], where a linear
combination of the master system state variables is synchronized with a
linear combination of the slave system state variables. In [28], an active
backstepping controller is designed for combination synchronization of three
classic chaotic systems. Backstepping synchronization of Three Josephson
Junctions is studied in [29] using function projective combination scheme.
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Function combination synchronization is used in [30] of three chaotic com-
plex systems. Combination–combination synchronization for three and four
nonlinear complex chaotic systems is investigated in [31] and [32], respec-
tively. In their work, the authors utilize projective method to achieve syn-
chronization. Compound synchronization for four chaotic systems in [33],
compound combination synchronization of five chaotic systems in [34] and
dual combination synchronization of six chaotic systems in [35] are the re-
cently published articles in the subject of compound synchronization. How-
ever, to the best knowledge of the present authors, the synchronization prob-
lem of a chaotic system as a master and multiple chaotic systems as multi-
slave systems is not addressed yet. Actually, the main drawback of the
previous research is that they are not flexible enough for different number of
chaotic systems with different number of state variables. Therefore, the aim
of this paper is to provide a combination synchronization approach, which
can be utilize to synchronize between a chaotic system as a master system
with multiple another chaotic systems as slave systems. A control law and
parameter estimation strategy are introduced based on the HMPS method,
adaptive control theory and the Lyapunov stability theory, to achieve such
a synchronization scheme.

The reminder of this research is organized as follows: The hybrid mod-
ified projective synchronization problem between a typical class of chaotic
systems consisting a master system and multiple slave systems are discussed
in Section 2. In this section, the appropriate feedback controller and pa-
rameter estimation laws are introduced. Furthermore, the feasibility of the
proposed synchronization scheme is verified by the Lyapunov stability theo-
rem. Then, some numerical simulations are presented in Section 3 to confirm
the feasibility and the stability of the theoretical discussions presented in the
previous section. Finally, a brief discussion and some concluding remarks
are presented in Section 4.

2. Synchronization

Consider a typical class of one master and m slaves (haper)chaotic sys-
tems as follows:{

ẋ(t) = f(x, t)Φc + F (x, t) ,
ẏi(t) = gi(yi, t)Φi(t) +Gi(yi, t) + ui(t) , i = 1, 2, · · · ,m ,

(1)

where x = (x1, x2, · · · , xn)T ∈ Rn×1 stands for the state variables vector of
the master system and yi = (yi1, yi2, · · · , yin)T ∈ Rn×1 denotes the state
variables vector of the ith slave system. Φi(t)=(φi1(t), φi2(t), · · · , φin(t)) ∈
Rn×1 for i = 1, 2, · · · , n denotes the uncertainty function of the system
parameters vectors Φc = (φ1c, φ2c, · · · , φnc) ∈ Rn×1. f(x, t), gi(yi, t) ∈
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Rn×n and F (x, t), Gi(yi, t) ∈ Rn×1 are some sort of linear and nonlinear
matrix of functions, respectively, and u(t) indicates the forcing controller
of the slave system to be designed. In the presented HMPS method, an
appropriate control law u = (u1,u2, · · · ,um) would be designed in which
the states of the leader attractor xi are synchronized with a proportional
combination of the states of follower attractors yi of system (1). Thus, the
HMPS errors can be defined as follows:

ej = xj −
n∑
k=1

λkjykj , ∀j = 1, 2, · · · , n , (2)

where λj = (λj1, · · · , λjm) denotes the modified scaling factor, which is
defined in such a way that λj1 + · · ·+ λjm = 1: for all j = 1, · · · , n. Then,
the dynamical representation of system errors (2) can be given as follows:

ėj = ẋj −
n∑
k=1

λkj ẏkj , ∀j = 1, 2, · · · , n . (3)

The main object of this study is to derive an appropriate control law and a
parameter estimation law to control the behavior of multiple chaotic systems
to asymptotically track the state variables trajectories of a leader chaotic
system. In other words, the system errors (2) asymptotically approach zero
as time tends to infinity, i.e. limt→∞ |ej(t)| = 0. To this end, in the following
theorem, some controllers are defined to provide such criteria.

Theorem 2.1. The chaotic synchronization of the leader–follower attrac-
tors (1) with the leader state variables vector x, the follower state variables
vectors yi, the modified projective scaling factors λij, and the system pa-
rameters vector Φc will be achieved for every initial state variables x(0) and
yi(0), if the adaptive feedback controller and the parameter estimation law
are defined as follows:

ui = −Gi(yi, t)− gi(yi, t)Φ(t) +
n∑
k=1

Λifki(x, t)φic(t) +
1

n
ΛiF (x, t) +Kei ,

(4)

and

φ̇i(t) = ei

n∑
k=1

fki(x, t) , (5)

where Λi = diag{ 1
λi1
, 1
λi2
, · · · , 1

λin
} and K = (ki1, ki2, · · · , kin) are positive

constant coefficients.
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Proof. Assume the Lyapunov candidate function here as

V =
1

2

n∑
i=1

e2i . (6)

By differentiating equation (6) with respect to the time domain, one can get

V̇ =
n∑
i=1

eiėi . (7)

Substituting the presented control law (4) and the parameter estimation
equation (5) into equation (7) yields

V̇ = −
n∑
i=1

kie
2
i , (8)

which is negative definite when the constants ki are positively valued and the
proof is complete. Therefore, according to Theorem 2.1., hybrid modified
projective synchronization of a typical uncertain master chaotic system with
an arbitrary combination of chaotic systems can be achieved by designing an
appropriate control law based on equation (4) and parameter estimation law
according to equation (5), which guarantees that the synchronization errors
in equation (2) asymptotically approach zero. Furthermore, the estimation
of master system parameters converges to their unknown true values.

3. Numerical results

In this section, the results of numerical simulations of chaotic systems
are presented to verify the feasibility and the effectiveness of the proposed
method.

3.1. Chaos synchronization of gyroscope chaotic system

In this subsection, the problem of the single-master, multi-slave sys-
tem synchronization between the gyroscope chaotic system [36] and multi-
ple slave systems is presented via designing an appropriate hybrid modified
projective feedback controller. Multi-slave HMPS is performed by Lü [37],
Chen [38] and Liu [39] as multi-slave chaotic systems.

In [36], a typical structure of a gyroscope chaotic system is introduced.
The dynamical representation of gyroscope chaotic system presented in [36]
can be rewritten in the following dynamical form:
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ẋ1 = x2 ,

ẋ2 = −α (1−cosx1)2
sin3x1

+ β sinx1 − c1x2 − c2x32 + f sin (ωt) sinx1 ,
(9)

where the state variables x1 and x2 represent the value of rotation an-
gle and its dynamical values of gyroscope system, respectively. α, β, c1, c2
and f are the unknown parameters of the system. The chaotic represen-
tation of gyroscope system (9) is shown in Fig. 1, with system parameters
α = 100, β = 1, c1 = 0.5, c2 = 0.05, f = 35.5 and ω = 2, and the initial-state
variables as: x1 = 6 and x2 = 5.7.
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Fig. 1. Phase portraits of the gyroscope chaotic system.

In addition, let us consider the Lü [37], Chen [38] and Liu [39] chaotic
systems as three slave chaotic systems as follows:

— Lü chaotic system [37] is considered as the first slave system

y1 :

 ẏ1 = α1(y2 − y1) ,
ẏ2 = α2y2 − y1y3 ,
ẏ3 = y1y2 − α3y3 ,

(10)
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where α1, α2 and α3 are the parameters of the Lü chaotic system as the
first slave system. The phase portrait of the Lü chaotic system based
on equation (10) is depicted in Fig. 2 with the system parameters:
α1 = 36, α2 = 30, and α3 = 20.

Fig. 2. Time portrait of the Lü chaotic system.

— Chen chaotic system [38] is used as the second slave system

y2 :

 ẏ1 = β1(y2 − y1) ,
ẏ2 = (β3 − β1)y1 − y1y3 + β3y2 ,
ẏ3 = y1y2 − β2y3 ,

(11)

where β1, β2 and β3 are the parameters of the Chen chaotic system
as the second slave system. The phase portrait of the Chen chaotic
system according to equation (11) is shown in Fig. 3 with the system
parameters: β1 = 35, β2 = 3 and β3 = 28.
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Fig. 3. Time portrait of the Chen chaotic system.
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— Liu chaotic system [39] is chosen as the third slave system

y3 :

 ẏ1 = y3 − γ1y1 + y1y2 ,
ẏ2 = 1− γ2y2 − y21 ,
ẏ3 = −y1 − γ3y3 ,

(12)

where γ1, γ2 and γ3 are the parameters of the Chen chaotic system as
the third slave system. The phase portrait of the Liu chaotic system
(12) is presented in Fig. 4 with the system parameters: γ1 = 0.2, γ2 =
0.5 and γ3 = 0.1.

Fig. 4. Time portrait of the Liu chaotic system.

Consider the aforementioned gyroscope chaotic system with uncertainty
in its parameters as the master system, and the Lü, Chen and Liu chaotic
systems as the multi-slave chaotic systems. Then, the control and parameter
estimation laws are derived as equations (13) and (14), respectively

u1 :

{
u11 = −α1(y2 − y1) + 1

3λ11
x2 + k11e1 ,

u12 = −α2y2 + y1y3 − 1
λ12

(
α(t) (1−cosx1)

2

sin3 x1
− β(t) sinx1

)
+ k21e2 ,

u2 :

{
u21 = −β1(y2 − y1) + 1

3λ21
x2 + k21e1 ,

u22 = (β1 − β3)y1 + y1y3 − φ23y2 − 1
λ22

(
c1(t)x2+ĉ2(t)x

3
2

)
+ k22e2 ,

u3 :

{
u31 = −y3 + γ1y1 − y1y2 + 1

3λ31
x2 + k31e1 ,

u32 = −1 + γ2y2 + y21+
1
λ32

(f(t) sin(ωt) sinx1) + k32e2 ,

(13)

and 
α̇(t) = −e2 (1−cosx1)

2

sin3 x1
,

β̇(t) = +e2 sinx1 ,
ċ1(t) = −e2x2 ,
ċ2(t) = −e2x32 ,
ḟ(t) = +e2 sinωt sinx1 ,

(14)
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where α(t), β(t), c1(t), c2(t) and f(t) are the estimation of the master system
parameters α, β, c1, c2 and f , respectively, and kij are positive constants
for all i, j = 1, 2, 3. The numerical simulations of the proposed method
are carried out with considering the λij = 0.5 and kij = 2 for all i, j =
1, 2, 3. The constant parameters of the master system (9) are taken as:
α = 80, β = 2, c1 = 0.07, c2 = 0.6 and f = 28. In addition, the constant
values of the slave chaotic systems, equations (10), (11) and (12) are chosen
as: α1 = 36, α2 = 30, α3 = 20, β1 = 35, β2 = 3, β3 = 28 and γ1 = 0.2, γ2 =
0.5, γ3 = 0.1, respectively. Finally, the initial values of the estimations of
system parameters are: α(t) = 70, β(t) = 1.5, c1(t) = 0.04, c2(t) = 0.2 and
f(t) = 20.

The simulation is performed by assuming the initial system state values
as: x1(0) = 2, x2(0) = 3 and x3(0) = 25, for master chaotic system in equa-
tion (9) and y11(0) = 8, y12(0) = 14, y13(0) = 3 and y21(0) = 12, y22(0) = 6,
y23(0) = 4 and y31(0) = 10, y32(0) = 16, y33(0) = 2, for slaves chaotic sys-
tems in equations (10), (11) and (12), respectively. The numerical simulation
result of the synchronization scheme is shown in Fig. 5.
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Fig. 5. Chaos synchronization of gyroscope chaotic system with multi-slave systems.

3.2. Chaotic example

In this part, adaptive hybrid modified projective synchronization be-
tween the Lorenz chaotic system [40] as master system, the Lü [37], Chen [38]
and Liu [39] chaotic systems as three slave chaotic systems are presented.
The Lorenz chaotic system is as follows:
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x :

 ẋ1 = −φ1x1 + φ1x2 ,
ẋ2 = φ2x1 − x2 − x1x3 ,
ẋ3 = x1x2 − φ3x3 ,

(15)

where x1, x2 and x3 are the state variables of the system, and φ1, φ2 and φ3
are the three constant and unknown parameters of the system, which have
to be estimated beside synchronization. The chaotic behavior of the system
is shown in Fig. 6, with the system parameters: φ1 = 11, φ2 = 27, φ3 = 2.7.
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Fig. 6. Time portrait of the Lorenz chaotic system.

Furthermore, if the Lü, Chen and Liu chaotic systems are the multi-slave
chaotic systems, then the control and the parameter estimation laws can be
achieved based on the general proposed controller in equation (4) and system
parameter estimation in equation (5) as follows:

u1 :


u11=−α1(y2 − y1)− 1

λ11
((x2 − x1)φ1(t)) + k11e1 ,

u12=−α2y2 + y1y3 +
1

3λ12
(−x2 − x1x3) + k21e2 ,

u13=−y1y2 + α3y3 +
1

3λ13
(x1x2) + k13e3 ,

u2 :


u21=−β1(y2 − y1) + k21e1 ,
u22=(β1−β3)y1+y1y3−φ23y2− 1

λ22

(
φ2(t)x1+

1
3(x2+x1x3)

)
+k22e2 ,

u23=−y1y2 + β2y3 +
1

3λ23
(x1x2) + k23e3 ,

u3 :


u31=−y3 + γ1y1 − y1y2 + k31e1 ,
u32=−1 + γ2y2 + y21 +

1
3λ32

(−x2 − x1x3) + k32e2 ,

u33=+y1 + γ3y3 − 1
λ33

(
−φ3(t)x3 − 1

3x1x2
)
+ k33e3 ,

(16)
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and

φ̇1(t) = −(x2 − x1)e1 ,
φ̇2(t) = −x1e2 ,
φ̇3(t) = x3e3 , (17)

where φ1(t), φ2(t) and φ3(t) are the estimation of the master system pa-
rameters φ1c, φ2c and φ3c, respectively, and kij are positive constants for all
i, j = 1, 2, 3. For numerical simulations, it was assumed that the λij = 0.5
and kij = 2 for all i, j = 1, 2, 3, φ1c = 11, φ2c = 27 and φ3c = 2.7. In addi-
tion, the constant values of the slave chaotic systems in equations (10), (11)
and (12) are chosen as: α1 = 36, α2 = 30, α3 = 20, β1 = 35, β2 = 3, β3 = 28
and γ1 = 0.2, γ2 = 0.5, γ3 = 0.1, respectively. The initial values of the esti-
mations of system parameters are: φ1(0) = 0.4, φ2(0) = 0.1 and φ3(0) = 0.3.

The simulation is performed by considering the initial values of the sys-
tem state variables as: x1(0) = 2, x2(0) = 3 and x3(0) = 25, for master
chaotic system in equation (15) and y11(0) = 8, y12(0) = 14, y13(0) = 3, and
y21(0) = 12, y22(0) = 6, y23(0) = 4 and y31(0) = 10, y32(0) = 16, y33(0) = 2,
for slave chaotic systems in equations (10), (11) and (12), respectively. The
obtained synchronization scheme is shown in Fig. 7. In addition, the amount
of disparity between unknown master system parameters and their corre-
sponding estimated values are depicted in Fig. 8. The simulation results
confirm the effectiveness of the proposed synchronization scheme.
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Fig. 7. Time portrait of the master–slaves systems state values along the time
domain.
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Fig. 8. Time portrait of the parameter estimation errors along the time domain.

4. Conclusion

This paper has focused on synchronization of a chaotic system as a mas-
ter system with multiple chaotic systems as slave systems. To this end, a
typical class of chaotic system has been considered for either master system
or slave systems, then complete synchronization has been carried out with a
hybrid modified projective synchronization scheme. Control and parameter
estimation laws have been derived to achieve such a synchronization goal.
The validity of the proposed controller has been verified by means of the
Lyapunov stability theorem. Furthermore, the numerical simulation results
have also confirmed the effectiveness of the theoretical discussions.
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