
Vol. 49 (2018) ACTA PHYSICA POLONICA B No 1

EFFECT OF ZEALOTS
ON THE OPINION DYNAMICS OF RATIONAL

AGENTS WITH BOUNDED CONFIDENCE

Farshad Salimi Naneh Karan, Subhadeep Chakraborty

Department of Mechanical, Aerospace and Biomedical Engineering
University of Tennessee

1512 Middle Drive, 414 Dougherty, Knoxville, TN 37996-2210, USA

(Received October 3, 2017; accepted November 29, 2017)

This paper incorporates a micro-level decision-making paradigm along
with a social interaction model (bounded confidence) in the presence of
influences (zealots). Every agent in the society represents a node in a
Barabási–Albert network and is given a decision-making ability (to choose
from a fixed set of states). The decision making is based on maximization
of estimated accumulated rewards gained as a result of an individual’s own
sequence of choices in the presence of different probabilities of external
events. The effects of interactions, and events on the final distribution of
decision states are studied with and without the presence of influences.
Bounded confidence model parameters (the distance parameter and the
convergence parameter) are used to study the final distribution of states,
and the time the society needs to reach its equilibrium (convergence time).
Finally, effects of network topology on the final distribution of states and
convergence time are presented.
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1. Introduction

Inspired by the rapid increase in interactions through social media, opin-
ion evolution in networked societies has become an active field of study.
Through interactions, a specific idea, opinion, behavior or decision can ini-
tiate, develop, and in some cases, spread to the whole society [1].

Decisions can be described in terms of three essential components: alter-
natives, anticipated consequences, and uncertainty. Despite vast diversity in
the field of judgment and decision making, its boundaries and major theoret-
ical concerns are mostly related to the historically dominant expected utility
family of theories made popular by Von Neumann and Morgenstern [2] and
Savage [3, 4]. The heart of the theory, sometimes called the rational expecta-
tions principle or expectancy-value model [5], proposes that each alternative
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course of action or choice option should be evaluated by weighting its global
expected satisfaction–dissatisfaction with the probabilities that the compo-
nent consequences will occur and be experienced. For example, in the Logit
model, the relative frequency of usage of a strategy is proportional to the
number of times it was successful (which implies a trial and error behav-
ior, at least in the beginning). In mathematical terms, this law of relative
effect [6] reads p(i) = N(i)/(Σi′N(i′)) = eU(i)/T

Σi′e
U(i′)/T , where for any param-

eter T (sometimes called the ‘social temperature’), U(i) = T lnN(i) is the
utility function, somewhat arbitrarily defining a preference scale.

However, although expectancy-value theory has been very successful in
explaining central concepts uses and gratifications research, other factors
that influence the process have been recognized. For example, the social
and psychological origins of needs, which give rise to motives for behav-
ior, may be guided by beliefs, values, and social circumstances into seeking
various gratifications through media consumption and other nonmedia be-
haviors. In a network setting, such as Twitter, one’s estimate of rewards
are not absolute quantities, but are influenced by opinions of friends and
neighbors. Social scientists for many years have developed theories of group
position [7], social identity [8], and system justification [9]. Now, such theo-
ries can be validated quantitatively by analyses of ‘retweets’, ‘via’, ‘hat tip’
and ‘mention’ conventions which have been shown to be analogous to broad-
casting one’s position, and help explain how virality, meme propagation, and
opinion formation occur on social networks [10].

To study the effect of social influence and interaction on emergent behav-
ior, a statistical physics approach deals with a single basic question of social
dynamics: how do local interactions between social agents create order out
of an initial disordered situation? Much theoretical efforts have been de-
voted to clarify the implications on the macroscopic outcomes, among other
aspects, of different interaction mechanisms (modeled by the voter model
[11–13], Sznajd model [14, 15], bounded confidence model [16–18], etc.), as
well as different topologies of the interaction networks (such as the com-
plete network, Erdős–Rényi random graphs [19], the Watts–Strogatz small
world network [20, 21] and the Barabási–Albert scale-free topology [22]). All
these models implement the phenomenon of ‘social validation’ and are thus
extensions or modifications, in some way, of the Ising spin model.

In all the above-mentioned models, opinions are modelized as numbers,
integer or real. Each agent is initialized with a random number as their
representative opinions. As interactions proceed, the agents rearrange their
opinion variables, through mutual discussions. At some stage, the system
reaches a configuration which is stable under the chosen dynamics; this fi-
nal configuration may represent consensus with all agents sharing the same
opinion, polarization with two main clusters of opinions (“parties”), or frag-
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mentation where several opinion clusters survive. In all such evolutionary
models of societies, the detailed behavior of each human, inherently the
complex outcome of many internal processes, is largely overlooked. This
gross simplification is justified by assuming that only higher level features,
such as symmetries, dimensionality, and topology of the interaction network
are relevant for the global behavior of the society, rather than microscopic
details of individual motives, perceptions and judgments.

There has also been a surge of research in the past few years on the
impact of “true believers”, “zealots”, “committed agents”, or “inflexibles” (es-
sentially used synonymously) on agent-based models on all kinds of net-
works. The terminology above varies from paper to paper, but the common
theme is the introduction of a special class of agents who never change their
states [23]. Non-exhaustibly, some of the notable works are by Galam [24]
and Mobilia [25], where the role of inflexible minorities and zealotry in the
breaking of democratic opinion dynamics has been studied. Xie [26, 27] has
looked at consensus in the presence of competing committed group, while
Yildiz [28] describes binary opinion dynamics with stubborn agents.

In this paper, we try to bridge this gap between micro- and macroscopic
studies of emergent behavior using an agent-based (AB) model in the pres-
ence of influences. We incorporate individual judgment and decision mech-
anism, parameterized as a probabilistic finite state automata (PFSA) while
observing the effect of interaction between these PFSA models and influences
linked through a Barabási–Albert scale free network. The basic idea behind
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Fig. 1. Schematic diagram of the interaction between PFSA-based individual logic
mechanisms and the society. At each decision step, an individual chooses the most
attractive state based on an utility maximization principle. This choice influences
the reward estimates of each of his neighbors within his confidence bounds, who in
turn choose the most attractive state. This cycle of interaction and reward update
continues till equilibrium is reached.
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this PFSA-based discrete choice model (DCM) is that each decision maker
chooses from a finite set of alternatives to maximize the potential cumula-
tive reward she can collect over several steps in the future (Fig. 1) [29]. The
perceived reward for the different choices are negotiated by each individual
through interaction with a subset of her neighbors, whose reward values do
not differ from hers by more than a chosen threshold (confidence bound).

To do so, we consider a society whose population are indecisive about
supporting their government or opposing it by joining the rebellion group.
The population includes a few influencers who try to convince the popu-
lation to join the rebellion group. We have created a setup which enables
individuals to interact with other agents in their network, take into account
different actions of the government, and then decide which of the two groups
they should join.

Section 2 discusses the PFSA-based discrete choice model used in this
paper. Section 3 explains elements of the social computation such as the
interaction model and the network topology. Section 4 presents the results
obtained from simulations along with necessary discussions. Finally, in Sec-
tion 5, findings of this study are summarized and the paper is concluded.

2. Individual Decision Making Algorithms (IDMAs)

Assumption 2.1. Finite set of discrete choices
At each instant, every individual in the network is faced with the same set
of finite discrete choices — for example, to vote for political candidate ‘A’
or ‘B’ or not to vote at all [30]. In Markov Decision Modeling [31] as well as
in the current framework, the problem is posed as finding the optimal choice
policy for maximizing the rewards gained as a result of one’s own choices. It
may be noted that this marks a departure from the usual setting in which
the Krause and Hegselmann (KH) bounded confidence model is studied. To
a degree, our model resembles the study of vector opinion dynamics, such
as those done by Axelrod [32] and several studies by Jacobmeier [33] and
Fortunato et al. [34]. In vector opinion dynamics, the opinion has an integer
number of components and the agents occupying the sites of a network,
communicate within the KH framework.
Assumption 2.2. Rational perspective
Individuals are assumed to be rational. This means they order the states
into which they can reach, and they maximize something, reward function in
the case of this paper,[30]. Subscription to the rational perspective does not
suggest similar reactions from individuals under the same influence. How-
ever, it creates a rational structure for individuals’ behavior. Since this
behavioral logic will be encoded as a Probabilistic Finite State Automa-
ton (PFSA) in the next section, rational perspective permits pairs of states
without authorized transitions to exist.
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Assumption 2.3. Probabilistic individual decisions
In the IDMA, decision making is not assumed to be a deterministic phe-
nomenon, i.e. we assume that even when provided with the same conditions
and reward vectors, different individuals may choose different decisions, and
even the same individual can choose differently on different occasions [30].
The only constraint is that the choices should conform with the rational
perspective (Assumption 2.2).
Assumption 2.4. Two kinds (external and internal (ε)) of events
External/global events simultaneously affect all individuals often resulting in
uncontrollable large scale transitions in the society as a whole. In contrast,
internal/local events represent the individuals’ personal choices.

2.1. Normative perspective modeled as a Probabilistic Finite
State Automata (PFSA)

The assumption of rational perspective allows individual behavior, to be
encoded as a PFSA. Even though the IDMA described in the last section
is a generic mathematical structure which can be used to model various
scenarios of emergent opinions, in this paper, we study the specific case of
a society in the cusp of a rebellion against the existing ruling power. In
our simplified depiction of the situation, each individual faces the internal
decision of supporting the existing government, supporting the rebelling
group, or remaining in a state of indecision. Additionally, the individual can
reach a state of political advantage or disadvantage, but the uncontrollable
transition to these two states can only occur through an external event,
namely, the success or failure of the revolution. The five PFSA states and
events are described in Table I.

TABLE I

List of PFSA states and events.

States Description Events Description

I State of being undecided/ g A popular act by the
neutral government

R State of supporting the g̃ An unpopular government
revolutionary group act

G State of supporting the ε An internal decision
government

A State of political advantage s Success of the revolution
D State of political disadvantage f Failure of the revolution
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Figure 2 gives a schematic diagram of the assumed rational perspective
encoded as a PFSA. It may be noticed that transitions such as g : G → R
or g : I → R are unauthorized, since it is assumed that a favorable act by
the government should not make anyone decide to join the opposing group.
Also, the same event can cause alternate transitions from the same state;
the actual transition will depend probabilistically on the measure of attrac-
tiveness of the possible target states. In the simplified described model,
all events of the same type are clubbed together as g (popular) or g̃ (un-
popular acts by the government). However, varying degrees of ‘popularity’
and ‘unpopularity’ of government acts can be encoded by creating separate
groups g1, g2, . . . , gn and g̃1, g̃2, . . . , g̃m with different costs associated with
these transitions.
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Fig. 2. Schematic diagram of normative perspective encoded as a PFSA.

2.2. Rewards, transition costs and probabilities

The probability of transitioning from one state to another depends on
three things — whether the target state is reachable from the current state,
whether the current event acts as an impetus for state change, and whether
the target state is relatively more attractive compared to the current state.
The concept of positive real measure of a sequence of events is used to cal-
culate the relative degree of attractiveness of states [35]. This is briefly
explained below.

At finite state, machine consists of states, inputs and outputs. The num-
ber of states is fixed; when an input is executed, the state is changed and an
output is possibly produced. The probabilistic automaton (PFSA) is a gen-
eralization of the finite automaton structure and includes two probabilities:
the probability P of a particular state transition taking place, and with the
initial state q0 replaced by a stochastic vector giving the probability of the
automaton being in a given initial state.

With suitable definitions of the states, inputs and transition matrices,
the PFSA structure is well-suited for quantifying the IDMA framework. Let
the discrete choice behavior be modeled as a PFSA as
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Gi ≡ (Q,Σ, δ, qi, Qm) , (1)

where Q = {I,R,G,A,D} is the finite set of choices with |Q| = 5 and the
initial state qi ∈ Q = I; i.e., the whole society is neutral in the initial stage.
The distribution of states may be represented as a coordinate vector of the
form of v̄i, defined as the 1×N vector

[
vi1, v

i
2, . . . , v

i
N

]
, given by

vij =

{
1 if i = j ,
0 if i 6= j .

(2)

Σ = {ε, g, g̃, s, f} is the (finite) alphabet of events (inputs to the PFSA) with
|Σ| = 5; the Kleene closure of Σ is denoted as Σ∗; the (possibly partial)
function δ : Q×Σ ×Q → [0, 1] represents probabilities of state transitions
and δ∗ : Q × Σ∗ × Q → [0, 1] is an extension of δ; and Qm ⊆ Q is the
set of marked (i.e. accepted) states. It may be noted that the parameters
of the model introduced so far are a physical manifestation of the choices
that each rational actor faces in an election scenario (as explored in [35]) —
the choice set Q is well-defined by the number of available options (parties
to vote for, G and R in this case), and the initial-state choice (qi = I)
allows the simulation to start from the same point every time. The effect
of initial clustering of similar choices in regional and local neighborhoods
can be an important factor and will be explored in subsequent publications.
The transition probability δ signifies a parameter that the actors learn or
estimate through their experience and understanding.

Definition 2.1. The reward from each state χ : Q → [0,∞) is defined as
a characteristic function that assigns a positive real weight to each state qi,
such that

χ(qj) ∈
{

[0, ∞) if qj ∈ Qm ,
{0} if qj /∈ Qm .

(3)

Definition 2.2. The event cost, conditioned on a PFSA state at which
the event is generated, is defined as π̃ : Σ∗ ×Q→ [0, 1] such that ∀qj ∈ Q,
∀σk ∈ Σ,∀s ∈ Σ∗

1. π̃[σk, qj ] ≡ π̃jk ∈ [0, 1) ;
∑

k π̃jk < 1 ;

2. π̃[σ, qj ] = 0 if δ(qj , σ, qk) = 0∀k ; π̃[ε, qj ] = 1 .

The event cost matrix, (Π̃-matrix), is defined as

Π̃ =


π̃11 π̃12 . . . π̃1m
π̃21 π̃22 . . . π̃2n
...

...
. . .

...
π̃n1 π̃n2 . . . π̃nm

 .
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The characteristic vector χ̄ is a numerical depiction of an individual’s
perception of expected benefits or ‘rewards’ to be obtained by being in a
particular state. For example, if the states represent various job choices, the
remuneration from these jobs can serve as the characteristic vector. On the
other hand, the event cost is an intrinsic property of the nominal perspective.
The event cost is conceptually similar to the state-based conditional prob-
ability of Markov Chains, except

∑
k π̃jk = 1 is not allowed to be satisfied.

The condition
∑

k π̃jk < 1 provides a sufficient condition for the existence
of the real signed measure, as discussed in [36].

Definition 2.3. The state transition function of the PFSA is defined as a
function π : Q× Q→ [0, 1) such that ∀qj , and qk ∈ Q

1. π(qj , qk) =
∑

σ∈Σ: δ(qj ,σ,qk)6=0

π̃(σ, qj) ≡ πjk ;

2. and πjk = 0 if {σ ∈ Σ : δ(qj , σ) = qk} = ∅ .

The state transition matrix, (Π-matrix), is defined as

Π =


π11 π12 . . . π1n
π21 π22 . . . π2n
...

...
. . .

...
πn1 πn2 . . . πnn

 .
2.3. Measure of attractiveness of the states

A real measure νiθ for state i is defined as

νiθ =

∞∑
τ=0

θ (1− θ)τ v̄iΠτ χ̄ , (4)

where θ ∈ (0, 1] is a user-specified parameter and v̄i is defined in Eq. (2).

Remark 2.1. Physical significance of real measure
Assuming that the state probability vector is v̄i corresponding to the current
state of the Markov process (i), at an instant τ time steps in the future, the
state probability vector is given by v̄iΠτ . Consequently, the expected value
of the characteristic function is given by v̄iΠτ χ̄. The measure of state i,
described by Eq. (4), is the weighted expected value of χ over all time steps
in the future for the Markov process that begins in state i. The weights for
each time step θ (1− θ)τ form a decreasing geometric series (sum equals 1).
The measure in vector form yields

ν̄θ = θ (I− (1− θ)Π)−1 χ̄ and ν̄norm =
1∑
k νk

ν̄ . (5)
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Remark 2.2. The effect of θ
The rate at which the weights decrease with increasing values of τ is con-
trolled by θ. More importance is put on the states reachable in the near
future if parameter θ assumes large values (close to 1), because of the fast
decay in the weights. The states through time are more uniformly weighted
for small values of θ allowing the system to interact with a large neighbor-
hood of the connected states.

The probabilistic decisions are made based on ν̄norm. The discounted ex-
pected reward of a state is proportional to the measure of that state. Higher
measure of a state corresponds to a higher discounted expected reward, hence
the potential to make a transition to that state is higher.

3. Elements of social computations

The dynamics of the KH bounded confidence model is very simple: One
of the agents is chosen at random; then the agent adopts the average opinion
of its compatible neighbors. Compatibility between two nodes is determined
by the distance between the current opinions held by the two nodes. The
procedure is repeated by selecting another agent randomly and so on. The
type of final configuration reached by the system depends on the value of the
confidence bound d. For a complete graph, consensus is reached for d > dc,
where dc ' 0.2 or 0.5, depending on whether the average degree of the graph
diverges or stays finite when the number of vertices goes to infinity.

In this paper, it is assumed that the interaction is entirely through the
characteristic function χ of the states.This assumption is based on the insight
that the anticipated reward from a state is the most well-discussed and well-
broadcast quantity in a social network [37, 38]. The update rule for the
reward vector of agent i due to interactions with its neighbors is as follows:

χ̄it+1 = χ̄it + µ
(
χ̄itneighbors − χ̄

i
t

)
, (6)

where χ̄itneighbors is the mean reward vector of the first-order neighbors in
the network of agent i at time step t. Following the notion of bounded
confidence, only those neighbors whose opinions are within χ(qj) ± d,∀j
contribute to the opinion update of agent i. Here, µ (or the convergence
parameter) is the weight which determines how much an agent is influenced
by the other one.

Since many networks in the real world are conjectured to be scale free,
including the World Wide Web, biological networks, and social networks,
in this study, a BA extended model network created by the Pajek software
program is used. Table II presents the parameters of the network. In addi-
tion, one of the experiments is repeated on a complete graph topology for
comparing the results related to different networks.
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TABLE II

List of parameters used for BA scale-free network.

Number of vertices 100
Number of initial disconnected nodes 3
Number of added/rewired edges at a time 2
Probability to add new lines 0.3333
Probability to rewire edges 0.33335

3.1. Numerical simulations

In this study, a population of 100 people are initialized and assigned
a random number drawn from a uniform distribution U(0, 1), representing
the time remaining before that person makes a decision. This imposes an
ordering on the list of people in the network. As soon as someone makes a
decision, the time to her next decision, drawn from U(0, 1), is assigned and
the list is updated. Additionally, external events g and g̃ are also associated
with a random time drawn from U(a, b). Choosing a and b, the external
events can be interspersed more, or less densely.

At t0, all 100 individuals are initialized at state I. Initial values of a mean
reward vector χ̄m and the true event probabilities are fixed. Individuals
receive a noisy estimate of the true probabilities and the rewards. At the time
epoch tk, when it is the ith person’s turn to make a decision, she updates her
personal estimate of the reward vector according to the influence equation
(Eq. (6)). She then calculates the degree of attractiveness of the states based
on the normalized measure, using Eq. (5). The transition probabilities are
calculated as P (qtk+1

= q′|qtk = q, σ = σ′) = νnorm(q′)R(q, σ′, q′), where
R(q, σ′, q′) = 1 if σ′ : q → q′ exists, otherwise 0. The only difference in the
case of an external event such as g, g̃, s or f is that everyone simultaneously
updates their states rather than asynchronously, as in the case of internal
events. Algorithm 1 describes how numerical simulations of this study have
been conducted.

3.1.1. Effect of influencing agents in decision making

In this study, the influencers are treated as indistinguishable except for
the fact that they never update or change their χ̄ values; moreover, they
do not make decisions and stay in the same state of mind during the entire
simulation. It is also typical that the influencers are serving a certain agenda,
in this case, trying to mobilize forces to join the rebellion. However, this
influence is exerted very passively, by advertising a higher value for χ(R)
and lower value for all other states
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Algorithm 1 : Interactions and decision making
Inputs: N,µ, d, θ, influence size, network
Initialization;
Randomly order nodes and events;
while Not converged do

for (Node i) do
Update χ̄it+1 from Eq. (6);
Update ν̄inorm from Eq. (5);
Update state for Node i;
Insert Node i randomly in the ordered list;

end for
if (an external event occurs) then

Update χ̄it+1 ∀i ∈ N ;
Update ν̄inorm ∀i ∈ N ;
Update state for all nodes;

end if
end while

χI(qj) =

{
χm(qj)−∆ if j = 1, 3, 4, 5 ,
χm(qj) +∆ if j = 2 ,

(7)

in which χI(qj) represents the reward associated with state qj for influence
nodes, and χ̄m is an estimate of the reward values expressed by the whole
society on an average. ∆ is a parameter adjusting the strength of influences
(control input). In a situation where influences have to favor other states, the
corresponding element in the mean reward vector needs to be strengthened.

4. Results and discussions

This study investigates the simultaneous interplay between two sepa-
rate subsystems, namely a logical decision-making subsystem modeled by
a PFSA, and the interaction and influence subsystem modeled by bounded
confidence. Parameters of each subsystem is investigated separately. More-
over, each simulation is conducted in two phases. During the first phase
(decision epoch ≤ 5000), the dynamics of the opinion evolution is studied
without introducing the effect of influences. In the second phase (decision
epoch > 5000), a group of 10 influences is activated.
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4.1. PFSA parameters
4.1.1. External events

In the first set of experiments, the ratio of occurrences of ‘good’ and ‘bad’
external events, r = P (g) : P (g̃) is varied to observe the effect of long-term
government policies on a population. Each simulation was run 30 times and
the average of all the runs are showed in Fig. 3.
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Fig. 3. Effect of external events on the final-state distribution of the society with
|I| = 10 and ∆ = 0.3.

Effects of external events can be observed in the first phase (decision
epoch ≤ 5000) of each subfigure. When r = P (g) : P (g̃) = 1 : 1, the
percentage of the population in states R and G are equal, and a large part of
the population remains undecided (Fig. 3 (a)). In the absence of any deadline
for making a decision, this result is only to be expected. As the government
starts to push more and more unpopular policies, opinions bifurcate and the
rebellion group starts to become more popular. Distribution of the society
between the 3 states varies monotonically with r.

The presence of influences in the second phase causes a dramatic change
in system behavior. In each of the influenced cases (Fig. 3), the percent-
age of the population in state R starts to increase rapidly, as soon as the
influencing nodes are activated. Interestingly, the length of the transition
phase between the initial (uninfluenced) distribution and the final steady
state is independent of r (Table III). The final steady state distribution,
on the other hand, is affected both by r, I. In Fig. 3 (e), the number of
popular policies by the government is high enough to overcome the effect of
influences, and therefore, a smaller portion of people are converted to join
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the rebellion state. It may be noted that the quick transition period is a
clear indication of the narrow window of opportunity available to intervene
and prevent the society from transitioning into instability.

TABLE III

Convergence time related to different ratios in Fig. 3.

r 1 : 9 3 : 7 1 : 1 7 : 3 9 : 1

Convergence time 6958 6940 6986 6856 6739

4.1.2. Comparison of IDMA with standard interaction models

A focus on network structure and large scale dynamics rather than in-
dividual behavior have successfully put forward several elegant theories of
emergent social behaviors, such as evolution of opinions, consensus forma-
tion, properties of elections, and formation of a common language.

In order to gauge the relative expressive power of such a simple inter-
action dynamics with the IDMA framework developed in this paper, we
directly compare the results obtained by implementing the more complex
IDMA framework with that of a well-established but simple model of social
interaction, namely the voter model where at each step, an arbitrarily chosen
node imitates the state of an arbitrarily chosen neighbor. We use the same
parameters to make the comparison reliable, such as the same BA scale-free
network, and consider a population of indecisive people alongside a few in-
fluencers who promote joining the rebellion group. In this setup, people can
stay in the indecisiveness state, or they can join either the rebellion group,
or the group which supports the government. Again, influencers enter the
simulations after the 5000th decision step (Fig. 4).
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Fig. 4. Effects of incorporating an IDMA; (left) voter model, (right) model incor-
porating the IDMA.
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One of the shortcomings of the voter model becomes apparent from the
first phase of the simulations; since the voter model runs purely on imita-
tion, starting from an initial condition where all agents are in the state of
indecisiveness, none of them is able to change their state to another one. On
the other hand, when IDMA is included in the model, with the help of the
reward vector, effects of external events can be taken into account resulting
in opinion change of agents in this region.

Another drawback of the voter model can be seen in the second phase
of the simulations. As soon as influences are added to the population, the
number of people supporting the revolution increases; and, finally, converges
to one of the stable equilibria — where all nodes coincide in the R state.
This phenomenon is rather unrealistic. However, in the model with IDMA,
although this increase is seen, this is limited by the heterogeneity in the
probabilistic decision-making logic of individuals. Most importantly, this
model can thus predict and converge to multiple equilibria rather than just
the three unrealistic pure states where the voter model converges. Consid-
ering these factors, the benefits of incorporating rational decision making in
opinion change models become apparent, though it comes with added layers
of complexity.

4.2. BC model parameters
4.2.1. Distance parameter (d) and the control input ∆

The influencers deliberately advertise biased reward values in an attempt
to pull the population slowly towards the state of their choice (R, in this
study). The amount of bias (∆) is vitally important, since too high of an
offset would cause the influencers to drift outside the confidence bound of
the general populace and, consequently, they will not be able to enter into
dialogues with the undecided nodes. On the other hand, a very low ∆ will
not have a pronounced effect on the dynamics of opinion evolution and will
not be able to produce a substantial change on a global scale.

Since ∆ may be thought of as an opinion bias adopted by the influ-
encing group in order to ‘control’ the final distribution of people over the
different states, we call ∆ the control input. d is the distance parameter
that determines the bound in the bounded confidence model. For simplicity,
the effects of d and ∆ are presented here only with respect to the state R
(Fig. 5). The results for other states are qualitatively equivalent. Higher
values of ∆ mean that stronger influences exist in the society whose reward
vectors have been altered significantly (Eq. (7)). Hence, for low values of
d, agents do not interact with influences causing no change in the system
behavior. On the other hand, for low values of ∆, although agents interact
with influences, the influences are not strong enough to seriously affect the
system behavior.
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Fig. 5. Dependence of the dynamics of the R state on d and ∆ with |I| = 10.

As an example, for an intermediate confidence bound (d = 0.3), agents
can interact with strong influences resulting in noticeable changes in the
behavior. However, if the control ∆ is too high, influences lie out of the
confidence zone of agents. So, although present, influences cannot affect the
society. For d = 0.5, agents are able to interact with even stronger influences.
Consequently, a higher percentage of the population is in state R. From a
social psychology perspective, it is very important to estimate the bound of
confidence for individual groups in order to be effective in bringing about
a positive change. The optimal approach when trying to impact an older
population may not be similar to the control parameter suitable for younger
demographics.

4.2.2. Convergence parameter

Based on Eq. (6), the convergence parameter determines the influence
ability of a node, i.e. to what extent a node adheres to his personal estimates
of anticipated rewards from a choice as opposed to converging to the mean
estimate gathered from his first-order neighbors. µ = 0 implies complete self-
reliance while making decisions, while µ = 1 implies complete malleability.
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It may be conjectured that larger µs might lead to fewer steps required for
convergence for the population as a whole. This conjecture is validated in
Fig. 6.

4.2.3. Clustering behavior

Formation of clusters is a typical behavior observed in the BC model.
The distance parameter d determines the number of clusters in the equi-
librium state of a system. Large values of d results in interactions among
a large number of nodes, consequently very few clusters emerge [16]. This
phenomena is visualized in Fig. 7. As the distance parameter increases, the
number of clusters decreases.

(a) d = 0.1 (b) d = 0.3 (c) d = 0.5

Fig. 7. Clustering behavior of the BC model for different ds with |I| = 10.

Addition of influences after 5000 decision epochs adds a layer of complex-
ity to the clustering process. The influencers effectively attract and cluster
nodes, but in societies with low confidence bounds (d = 0.1), the effect is very
local. Most clusters retain their identities and never enter into any interac-
tions outside their own clique. This is demonstrated in Fig. 7 (a), where the
small effect of the influencers is illustrated in the inset. Broadly speaking,
this implies that societies which are highly clustered due to low confidence
bounds are more difficult to influence, unless all the nodes are very homo-
geneous to begin with. Increase in d allows more agents to interact (with
each other as well as with influencers), therefore, a more populated cluster
forms around influences (d = 0.3). Finally, when d = 0.5, the influences are
reachable to all agents resulting in only one cluster around influences.

4.2.4. Varying control input ∆(t)

So far, the influencers have always been treated as static agents, i.e. the
pro-revolution value of χI(q2) was fixed and unchanged during the course of
the simulation. The motivation behind studying varying control input (∆) is
to investigate whether a small group of influencers can start from a popular
stand-point, cluster the population around themselves, affect them continu-
ously without getting out of populations’s confidence bound, and guide them
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to a different set of rewards (χ̄), which ultimately gets filtered through the
IDMA to support of a different state. To do so, a new set of experiments
has been conducted using the exact same model; however, the χ value of
influencers increases linearly as a function of time steps with a rate of r.

The results of these experiments are shown in Fig. 8. Results are pre-
sented based on the distance parameter d and the rate r. The thick black/red
graph represents the χ value of influencers at each time step. Figure 8 de-
picts that for a specific distance parameter, there is threshold for r after
which the influencers get strong so fast that the society looses its reach to
influencers. For example, in Fig. 8 (a), the increase rate is low, resulting in
a homogenous population clustered around influencers. However, as r in-
creases, clusters appear both in and out of reach of influencers (Fig. 8 (b)).
Finally, after the threshold, the whole society looses its reach to the influ-
encers (Fig. 8 (c)) rendering their presence in the society obsolete. The same
reasoning can be applied for Figs. 8 (d), (e), (f).
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(c) d = 0.3, r = 0.001
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(f) d = 0.5, r = 0.005

Fig. 8. Clustering behavior of a society in the presence of influences with variable
control input.

It can also be seen that the threshold for r depends on the distance
parameter d. When r = 0.0005, d = 0.3 produces a cluster which do not get
affected by the influencers, but d = 0.5 produces a homogenous population
grouped around influencers or, in the case of r = 0.001, d = 0.3 results in
a society which does not interact with influencers, however, d = 0.5 results
in a society with clusters both in and out of reach of influencers. This
phenomenon is in line with the findings of the previous section.
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The interesting finding of these experiments is the fact that, although
for some rates the influencers get out of reach of individuals very fast, in
the time interval when they do interact with individuals, the whole society
is affected by their presence. For example, in Fig. 8 (b), in the first few
time steps, most of the society start lagging the influencers, but they cluster
again at a higher level of reward values. This means that the society is more
inclined towards the rebellion state (although influencers are out of reach)
in comparison to the period when influencers were absent.

4.2.5. Effect of network topology

Figure 9 provides a comparison of the time evolution of the BC interac-
tions deployed on a BA network and on a complete graph. Intuitively, the
complete graph promises to have a faster dynamics since the average degree
of each node is higher and influence should propagate faster. Results from
numerical simulations, on the other hand, indicate the opposite — influ-
ence propagation through the BA network is faster (measured by a smaller
transition period between initial and final states). This can be qualitatively
explained by the fact that the relative influence on each node from the in-
fluencers is much lower when the nodes are connected through a complete
network. The presence of many links from other regular nodes dilute the
effect of the influencing nodes, leading to a slower change and a lower per-
centage of the population in state R at equilibrium. The convergence times
for the two networks under discussion are reported in Table IV.
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Fig. 9. Effect of different network types on the final-state distribution with |I| = 10;
(left) BA network, (right) complete graph.
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TABLE IV

Comparison of characteristics related to two different networks.

Network Convergence time Percentage of population in R

BA 6624 51.51
Complete graph 8156 49.98

5. Conclusion

This paper attempts to incorporate a micro-level decision making
paradigm along with a social interaction model (bounded confidence) in
the presence of influences (zealots). Every agent in the society is given a
decision-making ability (to choose from a fixed set of states). The decision
making is based on maximization of accumulated rewards gained as a result
of an individual’s own choices in the presence of different events.

The effects of interactions and events on the final distribution of decision
states are studied with and without the presence of influences. Bounded
confidence model parameters (the distance parameter and the convergence
parameter) are used to study the final distribution of states, and the time
the society needs to reach its equilibrium (convergence time). Moreover,
effects of network topology on the final distribution of states, convergence
time, and dynamic of the society is presented.

It is observed that without influences, the final distribution of states
is purely a function of the external events; more unpopular policies by the
government result in higher percentages of people joining the rebellion group.
However, presence of influences causes a rapid change in the behavior of the
system in favor of the group they support (state R). A short transition
period is required for the system to reach equilibrium after the influences
are activated.

It is shown that no change in the final distribution of states takes place
unless influences are in the confidence bound of the population and at the
same time, have large enough offsets. The clustering behavior of the BC
model is visualized for different values of the distance parameter. It is con-
cluded that the time interval needed for a system to reach its equilibrium
decreases as the convergence parameter increases. In addition, the effect of
varying influence ability is studied. Results show that there is a limit for
the influence rate so that the society can keep up with the influencers, and
that limit depends on the distance parameter.

Finally, simulations reveal that not only is influence propagation slower
in the society when agents have higher number of links (complete graph
network), but also their effect in the final distribution of state R is weaker.
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