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Using the Schwinger–DeWitt expansion, we construct and study the ap-
proximate vacuum polarization, 〈φ2〉D, of the quantized massive scalar field
with a general curvature coupling parameter in higher-dimensional static
and spherically-symmetric black hole spacetimes, with a special empha-
sis put on the electrically charged Tangherlini solutions and the extremal
and ultraextremal configurations. For 4 ≤ D ≤ 7, the explicit analytic
expressions for the vacuum polarization are obtained when the Compton
length associated with the quantized field is much less than the character-
istic radius of the curvature of the background geometry and the nonlocal
contribution to the result ignored. For the conformally coupled fields, the
relation between the trace of the stress-energy tensor and the vacuum po-
larization is examined, which requires knowledge of the higher-order terms
in the Schwinger–DeWitt expansion.
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1. Introduction

The vacuum polarization, 〈φ2〉, has often been regarded as a lesser cousin
to the stress-energy tensor. However, despite the natural interest, there
are a few additional reasons to calculate and study 〈φ2〉. Indeed, it plays
an important role in symmetry breaking problem and in the calculation
of the trace of the stress-energy tensor of the conformally coupled quantum
fields, being much easier to find. For example, to construct the stress-energy
tensor within the framework of the Schwinger–DeWitt approach, one has
to functionally differentiate the effective action with respect to the metric
tensor, whereas to calculate the vacuum polarization, it is sufficient to use
the Green function. Moreover, the calculations of the vacuum polarization
may reveal conceptual subtleties of the problem and help to choose the

(1737)
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best calculational strategy. Generally speaking, if there are some technical
problems in the calculations of 〈φ2〉, the same is expected in construction of
the stress-energy tensor. On the other hand, if the calculation of the vacuum
polarization goes smoothly, the same is expected for the stress-energy tensor.
In the latter case, the only difference is the scale of the calculations.

Starting with the seminal work of Candelas [1], the vacuum polarization
has been, and currently is, studied in a number of physically interesting
cases, as for example, Schwarzschild black holes or FRWL cosmologies [1–18].
The vacuum polarization effects have been analysed in the spacetimes of
distorted black holes [19, 20], in the spacetimes of dimension higher (or
smaller) than 4 [21–31]. Approximate expressions describing 〈φ2〉 have been
constructed in Refs. [32–36].

The aim of this paper is to construct the vacuum polarization of a quan-
tized massive scalar field (with arbitrary curvature coupling) satisfying the
covariant equation (

−2+m2 + ξR
)
φ = 0 , (1)

where m is the mass of the field, ξ is the coupling constant and R is the
Ricci scalar, in a general D-dimensional static and spherically-symmetric
spacetime described by the line element

ds2 = −f(r)dt2 + h(r)dr2 + r2dΩ2
D−2 , (2)

where dΩ2
D−2 is the metric on a unit (D−2)-dimensional sphere, and to apply

the general formulas in the spacetime of the charged black hole. The line
element describing such configurations has been constructed by Tangherlini
in the early sixties [37]. It has a particularly simple and transparent form
when parametrized by the radial coordinates of the event and inner horizons,
denoted respectively by r+ and r−. The charged Tangherlini solution has
the form (2) with

f(r) =
1

h(r)
=

[
1−

(r+
r

)D−3] [
1−

(r−
r

)D−3]
. (3)

Making use of the relations

M =
D − 2

16π
ΩD−2

(
rD−2+ + rD−2−

)
(4)

and

Q = ± (r+r−)
D−3
2

√
(D − 3)(D − 2)

8π
, (5)

where ΩD−2 is the area of a unit (D − 2)-sphere, the line element can be
expressed in a standard mass, charge parametrization. The area of the
(D − 2)-dimensional sphere is given by
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ΩD−2 =
2π

D−1
2

Γ
(
D−1
2

) . (6)

When the horizons merge, i.e., (r+ = r− = r±), the topology of the
closest vicinity of the horizon of the extremal black hole is AdS2 × SD−2,
and the local geometry is a special case of the general solution

ds2 =
1

A

(
− sinh2 χdτ2 + dχ2

)
+BdΩ2

D−2 , (7)

where A,B ∈ R. It is a product spacetime with maximally symmetric
subspaces. Sometimes it is advantageous to work with the

ds2 =
1

Ay2
(
−dT 2 + dy2

)
+BdΩ2

D−2 . (8)

Equation (7) describes the vicinity of the extremal black hole (2) provided
A = f ′′(r±)/2 and B = r2±. Consequently,

A =
(D − 3)2

r2±
(9)

and in D = 4, one has the Bertotti–Robinson solution.
The calculations of the stress-energy tensor and the vacuum polarization

of the quantized fields in curved spacetimes are extremely hard as they
exhibit a nonlocal dependence on the spacetime metric. Here, we consider
the case when the Compton length associated with the field, λc, satisfies the
condition

λc
L
� 1 , (10)

where L is a characteristic radius of the curvature of the background geome-
try and, consequently, the nonlocal contribution to the vacuum polarization
can be neglected [25, 34, 38, 39].

In the proper-time formalism, one assumes that the Green function,
G(x, x′), that satisfies the equation(

2−m2 − ξR
)
G
(
x, x′

)
= −δ

(
x, x′

)
(11)

is given by

GF
(
x, x′

)
=

i∆1/2

(4π)D/2

∞∫
0

ids
1

(is)D/2
exp

[
−im2s+

iσ (x, x′)

2s

]
A
(
x, x′; is

)
,

(12)
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where

A
(
x, x′; is

)
=
∞∑
k=0

(is)kak
(
x, x′

)
, (13)

s is the proper time and the biscalars ak(x, x′) are the celebrated Hadamard–
DeWitt coefficients, ∆(x, x′) is the vanVleck–Morette determinant and the
biscalar σ(x, x′) is defined as the one-half of the geodetic distance between
x and x′. Now, let us define

A(n)
reg

(
x, x′; is

)
= A

(
x, x′; is

)
−
bD

2
c−1∑

k=0

ak
(
x, x′

)
(is)k , (14)

where bxc (a floor function) gives the largest integer less than or equal x,
substitute in Eq. (12) A(D)

reg (x, x′; is) for A(x, x′; is) and, finally, denote the
thus obtained biscalar by G(D)

reg . The field fluctuation that characterizes the
vacuum polarization in the D-dimensional spacetime is defined as〈

φ2
〉
= −i lim

x′→x
G(D)

reg . (15)

Making the substitution m2 → m2 − iε (ε > 0), integral (12) can be easily
calculated [25, 26]

〈
φ2
〉
=

1

(4π)D/2

N∑
k=bD/2c

ak
(m2)k+1−D/2Γ

(
k + 1− D

2

)
, (16)

where the coincidence limit of the Hadamard–DeWitt biscalars is defined as
ak = limx′→x ak(x, x

′) and the upper sum limit, N , depends on how many
terms of the expansion we want to use. One expects that if condition (10)
holds, Eq. (16) gives a reasonable approximation to the exact 〈φ2〉. Equa-
tion (16) is a generalization to arbitrary dimension of the formula derived
by Frolov [35] and coincides with the result obtained in Ref. [24].

The plan of the paper is as follows. In the next section (Subsections 2.1
and 2.2), we shall construct the vacuum polarization of the quantized mas-
sive field in the general static and spherically-symmetric D-dimensional
spacetime (4 ≤ D ≤ 7) and use the obtained formulas in the spacetime
of the charged Tangherlini black holes1. The special emphasis is put on the
extremal and ultraextremal black holes, i.e., the configurations in which two
or three horizons merge.

1 Actually, we have calculated the vacuum polarization in 4 ≤ D ≤ 9. However, the
complexity of the formulas describing 〈φ2〉D rapidly grows with D and the results in
the higher-dimensional case are rather complicated. A brief information about 〈φ2〉
in 8- and 9-dimensional Tangherlini spacetime is given at the end of Sec. 2.2. All
results can be obtained on request from the first author.
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In Section 2.3, we shall analyse the trace of the stress-energy tensor of
the conformally coupled massive fields and analyse its relation to the vacuum
polarization. The last section concludes the paper with some final remarks,
putting our results in a somewhat broader perspective. Our general results
for 〈φ2〉 in D-dimensional black hole spacetime are relegated to Appendix.

Throughout the paper the natural system of unit is used. The signa-
ture of the metric is “mainly positive” (−,+, . . . ,+) and our conventions for
curvature are Rabcd = ∂cΓ

a
bd . . . and R

a
bac = Rbc.

2. 〈φ2〉 in the spacetime of D-dimensional static and
spherically-symmetric black hole

Formula (16) shows that the Hadamard–DeWitt coefficients can be used
in a twofold way: Firstly, for a given dimension, the lowest coefficient of
the expansion gives the leading approximation to the vacuum polarization,
whereas the higher order coefficients give the higher-order terms in (16). On
the other hand, we can confine ourselves only to the main approximation
and use the coefficients in various dimensions. Moreover, for the conformally
coupled fields with ξ = (D−2)/(4D−4), one has a very interesting formula
that relates the trace of the quantized stress-energy tensor and the vacuum
polarization.

In this paper, we shall restrict our analyses to 4 ≤ D ≤ 7 and use the
first three nontrivial coefficients (a2, a3, and a4) to calculate all the terms
from Table I. Since the results for the higher-order terms as well as these
for D > 7 are rather complicated, to prevent unnecessary proliferation of
lengthy and not very illuminating formulas, they will be not presented here.
(The only exception is Sec. 2.3).

TABLE I

The rows (from left to right) represent the dimension of the spacetime, the leading
terms, the next-to-leading and the next-to-next-to-leading terms of the expan-
sion (16).

D 1st 2nd 3rd

4 a2 a3 a4
5 a2 a3 a4
6 a3 a4
7 a3 a4
8 a4
9 a4
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As can be seen in Table I, the possible applications of the Hadamard–
DeWitt coefficients are of course wider. Indeed, the coefficients ai for (i ≥ 3)
play a crucial role in calculations of the stress-energy tensor of the quantized
massive fields in a large mass limit, giving the unique possibility to study
the dependence of the quantum effects on the dimension of the background
spacetime. In this case, the entries in Table I should be moved one col-
umn to the left, as the main approximation of the stress-energy tensor in
D = 4 and 5 requires a3, whereas a4 is needed in the calculation of the main
approximation in D = 6 and 7 (see Sec. 2.3).

If there are N scalar fields φi, each with a different mass mi, then all
formulas remain intact provided the following change is made:

1

m2
=

N∑
i=1

1

m2
i

. (17)

This also shows that the quantum effects can be made great by taking large
number of the quantized fields.

2.1. D = 4 and D = 5

Inspection of the general formula (16) shows that to calculate the vac-
uum polarization of the massive scalar field, one needs the coincidence limit
of the Hadamard–DeWitt coefficient a2, which is constructed from the cur-
vature invariants RabcdRabcd, RabRab, R2 and 2R. Although it looks quite
simple, the resulting expression for 〈φ2〉 constructed for a general metric (2)
is complicated. Indeed, taking a2 in the form of [40]

a2 =
1

180
RabcdR

abcd− 1

180
RabR

ab+
1

6

(
1

5
− ξ
)
R a

;a +
1

2

(
1

6
− ξ
)2

R2 , (18)

after some algebra, one has

〈
φ2
〉
D
=

1

K

2∑
i=0

13∑
k=1

αikξ
iFk(r) , (19)

where

K =

{
16π2m2 if D = 4 ,

32π2m if D = 5
(20)

and the functions Fk (the same for both dimensions) as well as the dimen-
sion-dependent coefficients αik are shown in Table II, see Appendix.
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Since the general form of the vacuum polarization can easily be inferred
form Table II, it will not be presented explicitly here. Instead, we shall
discuss its behaviour in a few important regimes. First, let us consider the
simplest case of the four-dimensional black holes. On general grounds, one
expects that for the line element (3), the result falls as r−6 and the most
interesting region is the vicinity of the event horizon. For the physical values
of the coupling constant, i.e., for ξ = 0 and ξ = 1/6, the general expression
calculated at the event horizon reduces to

K
〈
φ2
〉
4
= − f ′′

18r2+
+

1

60
f ′′

2− f ′

3r3+
+

13f ′2

45r2+
− 1

30
f (3)f ′− f ′f ′′

30r+
+

1

15r4+
(21)

and

K
〈
φ2
〉
4
=

1

360
f ′′

2
+

f ′2

90r2+
− 1

180
f (3)f ′ − f ′f ′′

30r+
+

1

90r4+
, (22)

respectively.
Now, let us assume that the black hole is extremal, i.e., the event and

the inner horizons coincide and analyze the vacuum polarization on the de-
generate horizon. It means that f(r±) = f ′(r±) = 0 and from the previous
analysis, we know that the same result can be obtained calculating the vac-
uum polarization in the product spacetime with the maximally symmetric
subspaces. Inspection of Table II gives the following expression for the vac-
uum polarization in the spacetime of the extreme black hole:

K
〈
φ2
〉
4
=

1

15r4±
+ ξ2

(
−2f ′′

r2±
+

1

2
f ′′2 +

2

r4±

)
+ξ

(
2f ′′

3r2±
− 1

6
f ′′2 − 2

3r4±

)
+

1

60
f ′′2 − f ′′

18r2±
. (23)

If, additionally, the second derivative of the function f at the event horizon
vanishes, one has the Plebański–Hacyan geometry with

K
〈
φ2
〉
4
=

2ξ2

r4+
− 2ξ

3r4+
+

1

15r4+
. (24)

The Plebański–Hacyan solution is a product of the maximally-symmetric
two-dimensional subspaces, such that one of them has zero curvature [41].
Topologically, it is either M2 × SD−2 or AdS2 × ED−2, where M2 is a two-
dimensional Minkowski space and ED−2 is (D − 2)-dimensional Euclidean
space. Of course, here, we are interested in the former solution as the latter
appears for the charged topological black holes.



1744 J. Matyjasek, D. Tryniecki

Similarly, at the event horizon of the five-dimensional black hole, one has
for the minimal coupling,

K
〈
φ2
〉
5
= − f ′′

6r2+
+

1

60
f ′′

2 − 4f ′

3r3+
+

59f ′2

120r2+
− 1

30
f (3)f ′ − f ′f ′′

20r+
+

1

2r4+
(25)

and for the conformal coupling,

K
〈
φ2
〉
5
=

1

64

(
1

2r4+
− f ′′(r)

6r2+
+

23

120
f ′′2 +

5f ′

3r3+
− f ′2

30r2+

− 2

15
f (3)f ′ − 17f ′f ′′

10r+

)
. (26)

The vacuum polarization of the extremal black hole at the event horizon is
given by

K
〈
φ2
〉
5
= − f ′′

6r2±
+ ξ2

(
−6f ′′

r2±
+

1

2
f ′′

2
+

18

r4±

)
+ξ

(
2f ′′

r2±
− 1

6
f ′′

2 − 6

r4±

)
+

1

60
f ′′

2
+

1

2r4±
, (27)

whereas for the ultraextremal configuration, one has

K
〈
φ2
〉
5
=

18ξ2

r4±
− 6ξ

r4±
+

1

2r4±
. (28)

Finally, let us return to the charged Tangherlini black holes and introduce
new variables, x and β, defined as x = r/r+ and β = r−/r+. Simple
calculation gives

K
〈
φ2
〉
4
=

1

15r4+

[
1

x6
(
1 + 2β + β2

)
− 4

x7
(
β + β2

)
+

13

3x8
β2
]

(29)

and

K
〈
φ2
〉
5
=

1

5r4+

[
1

x8
(
2β4 − 4β2 + 40β2ξ + 2

)
+

1

x10
(
2β4 + 2β2 − 60β4ξ − 60β2ξ

)
+

1

x12

(
−17β4

6
+ 10β4ξ2 +

230β4ξ

3

)]
. (30)

The higher order terms of 〈φ2〉4 constructed from a3 and a4 can be found
in Ref. [16] and the results presented in this paragraph generalize those of
Lemos and Thompson [24].
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Inspection of Eq. (29) shows that the result (that is independent of ξ)
is always nonnegative on the event horizon and it tends to 0+ as x → ∞,
whereas in the (D = 5)-case, the vacuum polarization exhibits the more
complicated dependence on the coupling parameter. The asymptotic be-
haviour of the latter is shown in Fig. 1. The vacuum polarization at the
event horizon is always positive for the minimal and the conformal coupling.
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Fig. 1. The shaded regions in the (ξ, β)-space, in which the field fluctuation is
negative at the event horizon (left panel). The shaded region in the right panel
represents points with the property 〈φ2〉5 → 0− as r →∞.

Since the second derivative of f calculated at the event horizon of the
extreme four- and five-dimensional Tangherlini black hole is, respectively,
f ′′ = 2/r2± and f ′′ = 8/r2±, from (23) and (27), one has

K
〈
φ2
〉
4
=

1

45r4±
(31)

and

K
〈
φ2
〉
5
=

1

r4±

(
7

30
− 2

3
ξ + 2ξ2

)
. (32)

Equally well one can put β = 1 and x = 1 in (29) and (30). The same results
can be obtained using the line element (7).

2.2. D = 6 and D = 7

In this section, we shall analyse the approximation to the field fluctuation
of the quantized massive fields in D = 6 and D = 7. The coincidence
limit of the Hadamard–DeWitt biscalar a3(x, x′) is much more complicated
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than the coefficient a2 and can be written in the form that is valid in any
dimension [42]

a3 =
1

7!
b
(0)
3 +

1

360
b
(ξ)
3 , (33)

where

b
(0)
3 =

35

9
R3 + 17R;aR

;a − 2Rab;cR
ab;c − 4Rab;cR

ac;b + 9Rabcd;eR
abcd;e

−8R c
ab;c R

ab − 14

3
RRabR

ab + 24R b
ab;c R

ac − 208

9
RabR

a
c R

bc

+
64

3
RabRcdR

acbd +
16

3
RabR

a
cde R

becd +
80

9
RabcdR

a c
e f R

bedf

+
14

3
RRabcdR

abcd + 28RR a
;a + 18R a b

;a b + 12Rabcd e
;e Rabcd

+
44

9
RabcdR

ab
ef Rcdef (34)

and

b
(ξ)
3 = −5R3ξ + 30R3ξ2 − 60R3ξ3 − 12ξR;aR

;a + 30ξ2R;aR
;a − 22RξR a

;a

−6ξR a b
;a b − 4ξR;abR

ab + 2RξRabR
ab − 2RξRabcdR

abcd

+60Rξ2R a
;a . (35)

A closer inspection of the coefficient a3 shows that it is a sum of the curvature
invariants constructed from the Riemann tensor, its covariant derivatives
and contractions. In general, the coefficient [an] (for a given spin) is a linear
combination of the Riemann invariants and belongs to

⊕n
q=1R0

2n,q, where
Rrs,q is a vector space of Riemannian polynomials of rank r (the number of
free tensor indices), order s (number of derivatives) and degree q (number
of factors). The type of the field is encoded in the coefficients of the linear
combination.

Now, the vacuum fluctuation has a general form of

〈
φ2
〉
D
=

1

K

3∑
i=0

36∑
k=1

αikξ
iFk(r) , (36)

where

K =

{
64π3m2 if D = 6 ,

128π3m if D = 7
(37)

and the functions Fk and the (dimension-dependent) coefficients αk are listed
in Tables III–V, see Appendix. Once again, we shall not present the general
result for 〈φ2〉D as it can easily be obtained form the tables. Instead, we
shall confine ourselves to the physically important limits.
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Following the steps form the previous section, for the vacuum polariza-
tion at the event horizon of the minimally coupled field, one has

K
〈
φ2
〉
6
= −29f ′′

90r4+
+

f ′′2

30r2+
− 1

630
f ′′

3 − 58f ′

15r5+
+

116f ′2

45r4+
− 2f ′3

315r3+

−f
(3)f ′

15r2+
− 8f (3)f ′2

315r+
− f ′f ′′

15r3+
+

131f ′2f ′′

630r2+
+

2f ′f ′′2

315r+

− 1

140
f (4)f ′2 +

74

63r6+
+

1

210
f (3)f ′f ′′ , (38)

whereas the analogous result for the conformally coupled fields is given by

K
〈
φ2
〉
6
=

f ′′

2250r4+
− f ′′2

750r2+
− 2f ′′3

7875
− 2f ′

375r5+
− 16f ′2

1125r4+
+

2f ′3

2625r3+

−4f (3)f ′2

525r+
+

7f ′f ′′

375r3+
− 113f ′2f ′′

15750r2+
− 13f ′f ′′2

7875r+
+

1

700
f (3)f ′f ′′

−f
(4)f ′2

2100
− 74

7875r6+
. (39)

Usually, the quantum effects of the massive fields are most pronounced at
the event horizon and its closest vicinity. For the extremal and ultraextremal
configurations, one has

K
〈
φ2
〉
6
= −29f ′′

90r4±
+

f ′′2

30r2±
− 1

630
f ′′3 +

74

63r6±

+ξ3
(
72f ′′

r4±
− 6f ′′2

r2±
+

1

6
f ′′3 − 288

r6±

)
+ξ2

(
−36f ′′

r4±
+

3f ′′2

r2±
− 1

12
f ′′3 +

144

r6±

)
+ξ

(
89f ′′

15r4±
− 8f ′′2

15r2±
+

1

60
f ′′3 − 116

5r6±

)
(40)

and

K
〈
φ2
〉
6
= −288ξ3

r6±
+

144ξ2

r6±
− 116ξ

5r6±
+

74

63r6±
, (41)

respectively.
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Thus far our results have been valid for any static and spherically-
symmetric metric. Now, let us consider the charged Tangherlini solution.
Simple manipulations give

〈
φ2
〉
6
=

1

r6+

[
1

x12
(
15ρ− 30β3 + 280β3ξ

)
+
β3

x18

(
907ρ

105
− 1250β3

21
+ 432β3ξ2 +

5448ρξ

5
+

21576β3ξ

5

)
−β

6η

x21

(
576ξ2 +

16736ξ

5
+

88

35

)
+
β9

x24

(
36ξ3 + 702ξ2 + 2392ξ +

6761

315

)
+

η

x15

(
−1333β6ρ

63
+

3382β3

63
− 1232β3ξ

)]
, (42)

where η = 1 + β3 and ρ = 1 + β6. The sign of the vacuum polarization at
the event horizon as well as its asymptotic behaviour as r →∞ is shown in
Fig. 2. Specifically, the vacuum polarization at the event horizon is always
negative for the minimal coupling. On the other hand, for the conformal
coupling, it is positive for 0.683 < ξ < 0.762.
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Fig. 2. Points within the shaded region represent values of the (ξ, β)-space for
which the vacuum polarization is negative at the event horizon (left panel). The
shaded region in the right panel represents points with the property 〈φ2〉6 → 0−

as r →∞.
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Now, let us analyse the results obtained for the 7-dimensional black hole.
At the event horizon for the conformal and minimal coupling, one has

K
〈
φ2
〉
7
=

f ′′

192r4+
− 7f ′′2

2304r2+
− 653f ′′3

2903040
− f ′

32r5+
− 13f ′2

1728r4+
− 221f ′3

72576r3+

−23f (3)f ′2

4032r+
+

47f ′f ′′

1728r3+
− 139f ′2f ′′

16128r2+
− 37f ′f ′′2

96768r+
+

191f (3)f ′f ′′

120960

−f
(4)f ′2

5040
− f (3)f ′

864r2+
− 13

1296r6+
(43)

and

K
〈
φ2
〉
7
= −8f ′′

9r4+
+

f ′′2

18r2+
− 1

630
f ′′

3 − 112f ′

9r5+
+

199f ′2

36r4+
+

19f ′3

126r3+

−f
(3)f ′

9r2+
− 2f (3)f ′2

63r+
− f ′f ′′

6r3+
+

97f ′2f ′′

336r2+
+
f ′f ′′2

126r+

− 1

140
f (4)f ′

2
+

1

210
f (3)f ′f ′′ +

16

3r6+
, (44)

respectively. On the other hand, the vacuum polarization for the extremal
and ultraextremal black hole is given by

K
〈
φ2
〉
7
= − 1

630
f ′′

3
+

16

3r6±
+
ξ3
(
r2±f

′′ − 20
)3

6r6±
−
ξ2
(
r2±f

′′ − 20
)3

12r6±

+
ξ
(
3r4±f

′′2 − 100r2±f
′′ + 960

) (
r2±f

′′ − 20
)

180r6±
− 8f ′′

9r4±
+

f ′′2

18r2±
(45)

and

K
〈
φ2
〉
7
= −16(5ξ − 1)2(10ξ − 1)

3r6±
. (46)
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Finally, the result for the electrically charged Tangherlini black hole is

〈φ2〉7 =
1

r6+

[
1

x14

(
360ρ

7
− 144β4 + 1152β4ξ +

360

7

)
+
24η

x18

(
109β4

7
− 232β4ξ − 22

7
ρ

)
+
β4

x22

(
−940ρ

7
− 49688β4

63
+ 2640β4ξ2 + 5160ρξ +

60944β4ξ

3

)
+
ηβ8

x26

(
−3600ξ2 − 48400ξ

3
+

1240

3

)
+
β12

x30

(
288ξ3 + 4416ξ2 +

175072ξ

15
− 60544

315

)]
, (47)

where η = 1 + β4 and ρ = 1 + β8. The sign of the vacuum polarization at
the event horizon as well as its asymptotic behaviour as r → ∞ is shown
in Fig. 3. A closer examination shows that the vacuum polarization at the
event horizon is always negative for the minimal coupling, whereas for the
conformal coupling, it is positive for 0.697 < ξ < 0.825. Note qualitative
similarity of the results presented in Figs. 4 and 3.
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Fig. 3. Points within the shaded region represent values of the (ξ, β)-space for
which the vacuum polarization is negative at the event horizon (left panel). The
shaded region in the right panel represents points with the property 〈φ2〉7 → 0−

as r →∞.

In order to shed some light on this problem, we made analogous calcu-
lations in D = 8 and D = 9. In both cases, there is a qualitative similarity
with the (D = 5)-case. Moreover, at the event horizon, one can observe some
sort of qualitative complementarity, i.e., the shaded and unshaded regions
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Fig. 4. Points within the shaded region represent values of the (ξ, β)-space for
which the vacuum polarization is negative at the event horizon of the (D = 8)-
dimensional (lef panel) and (D = 9)-dimensional (right panel) charged Tangherlini
black hole.

in the (ξ, β)-space for the six- and seven-dimensional Tangherlini black holes
become unshaded and shaded for D = 8 and 9 (see Fig. 4). Thus, roughly
speaking, for 4 ≤ D ≤ 9, the shape of the regions of (ξ, β)-space for which
the vacuum polarization at the event horizon is negative (positive) depends
on the coefficients ai rather than on the dimension. On the other hand, the
regions characterized by the condition limr→∞〈φ2〉D → 0− do not depend
on the dimension of the Tangherlini black hole and look qualitatively the
same. Finally, observe that treated as a function of the radial coordinate,
the vacuum polarization rapidly falls to zero, possibly with a few local ex-
trema located near the event horizon. In Fig. 5, we have plotted the vacuum
polarization of the minimally coupled massive scalar field in the spacetime of
the neutral Tangherlini black hole. A comparison with the results presented
in Refs. [28, 29] reveals qualitative similarity in the behaviour of 〈φ2〉 for
massive and massless fields.

We also remark that the vacuum polarization on the degenerate horizon
of the extremal black hole can easily be calculated using the line element (7)
describing the spacetimes with the maximally symmetric subspaces2. Be-
cause of the symmetries, this approach is especially useful for the higher-
dimensional black holes.

2 We have checked that these two methods give precisely the same results.
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Fig. 5. This graph shows 〈φ2〉 of the massive scalar field (ξ = 0) as a function of
x = r/r+ in a spacetime of the neutral Tangherlini black holes for D = 4, 6, 8 (left
column) and D = 6, 7, 9 (right column).

2.3. Trace of the stress-energy tensor of the conformally coupled
massive fields

The one-loop effective action constructed from Green function (12) is
given by

W (1) =

∫
dDx(−g)1/2L , (48)

where

L =
1

2(4π)D/2

N∑
k=bD

2
c+1

ak
(m2)k−D/2

Γ

(
k − D

2

)
, (49)
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and the stress-energy tensor can be calculated using the standard formula

T ab =
2

(−g)1/2
δ

δgab
W (1) . (50)

It should be noted that the total divergences that are present in the effective
action can be discarded. For example, when calculating the stress-energy
tensor in D = 4 and D = 5, the number of the curvature invariants can be
reduced from 28 to 10.

For the conformally coupled fields, one has interesting relations between
the trace of the stress-energy tensor and the field fluctuation [5, 43]. Indeed,
provided ξ = (D − 2)/(4D − 4), we have

〈T aa 〉D =

{
CD −m2〈φ2〉D for D-even ,
1
2mCD −m2〈φ2〉D for D-odd ,

(51)

where CD is given by
CD =

abD/2c

(4π)bD/2c
. (52)

This relations can be explained as follows, for a conformally coupled classi-
cal massless fields, the trace of the stress-energy tensor is zero, whereas for
the conformally coupled massive fields, the trace is −m2〈φ2〉. On the other
hand, after quantization in even dimensions, the trace of the massles field
acquires anomalous value, and thus combining these facts, one expects that
some relations between the anomalous trace, the vacuum polarization and
the trace of the stress-energy tensor should hold. For the Schwinger–DeWitt
expansion, the first-order term cancels with the “anomalous term” and the
next-to-leading term is precisely the first-order approximation to the trace.
Similarly, the next-to-leading term of the trace is equal to the next-to-next-
to-leading term of the vacuum polarization 〈φ2〉D. It should be noted that
although the calculation of the trace of the stress energy with the aid of
Eq. (51) requires prior knowledge of the next-to-leading terms of the field
fluctuation (which are expressed in terms of the Hadamard–DeWitt coeffi-
cients), it is still much more simple than the computations of the functional
derivatives of the action with respect to the metric tensor. Moreover, it can
be regarded as a useful check of the calculations.

Using (50), we have constructed the stress-energy tensor of the mas-
sive quantized fields in 4 ≤ D ≤ 7 for the general static and spherically-
symmetric spacetime. Additionally, for D = 4 and 5, we have also calculated
the next-to-leading terms. On the other hand, we have calculated the first
three terms of the expansion of the field fluctuation in D = 4 and D = 5 and
the first two terms in D = 6 and D = 7 (see Table I), and demonstrated the
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validity of Eq. (51) for the general static and spherically-symmetric metric.
Since the final results are complicated and not very illuminating, here we
present only the trace of the stress-energy tensor in the spacetime of the (un-
charged) Tangherlini black hole. Regardless of the adapted method, after
some algebra, one has

〈T aa 〉4 = −
r2+(81r − 97r+)

4032π2m2r9
−
r2+
(
420r2 − 1125rr+ + 727r2+

)
2100π2m4 r12

, (53)

〈T aa 〉5 = −
r4+
(
243r2 − 323r2+

)
5040π2mr12

−
r4+
(
1152r4 − 3704r2r2+ + 2727r4+

)
2240π2m3r16

, (54)

〈T aa 〉6 = −
r6+
(
22680r6 − 81970r3r3+ + 65041r6+

)
10080π3m2r20

(55)

and

〈T aa 〉7 = −
r8+
(
320r8 − 1256r4r4+ + 1047r8+

)
128π3mr24

. (56)

The first term in the right-hand side of Eqs. (53) and (54) has been calculated
from a3, whereas the second-order terms from a4. Similarly, the first order
terms in Eqs. (55) and (56) have been calculated from a4. To calculate the
next-to-leading term, one needs the coefficient a5.

Since for the spherically-symmetric black hole we have three algebraically-
independent components of the stress-energy tensor, the covariant conser-
vation equation and knowledge of the trace reduce their number to one. It
suffices, therefore, to calculate one component of the stress-energy tensor to
reconstruct the remaining ones easily.

We conclude this section with a few remarks on the significance of the
presented results, especially in the context of the calculations of the stress-
energy tensor. The most important are: (i) such calculations are surely
possible to execute for (4 ≤ D ≤ 7), (ii) the components of T ba rapidly
decrease with r, (iii) the oscillatory character of the components of the
stress-energy tensor (caused by existence of local extrema) is confined to the
close vicinity of the event horizon, (iv) the calculations can be extended to
the topological black holes, (v) interesting back reaction effect near the event
horizon are expected as we have strong evidence that the energy density
(ρ = −T tt ) of the quantum field may be negative.

3. Final remarks

The Schwinger–DeWitt method gives unique possibility to study the
quantum effects in various dimensions. Moreover, as the sole criterion for
its applicability is demanding that the Compton length associated with the
field be small, with respect to the characteristic radius of the curvature
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of the background geometry, the Schwinger–DeWitt approach is also quite
robust. In practice, it turns out that the reasonable results can be obtained
for Mm > 2, where M is the mass of the black hole [44]. A comparison
made in Refs. [24, 45] between the numerical and analytical results confirms
the accuracy of the Schwinger–DeWitt method.

In this paper, using the generalized Schwinger–DeWitt approach, we
have calculated the vacuum polarization effects of the quantized massive
scalar field in the spacetime of the D-dimensional (4 ≤ D ≤ 7) static and
spherically-symmetric black hole. A special emphasis has been put on the
charged Tangherlini solutions. Contrary to the simplest Reissner–Nordström
case, the vacuum polarization for the charged Tangherlini black hole depends
on ξ and a ratio r−/r+ in a quite complicated way, as expected. Our results
can also be used to construct 〈φ2〉 when a cosmological constant is present,
as, for example, in a spacetime of the lukewarm black hole. The calculations
reported in this paper can also be generalized to the case of topological black
holes.

Since the geometry of the closest vicinity of the extremal black hole is
a direct product of the two maximally symmetric spaces AdS2 × SD−2, it
is possible to calculate 〈φ2〉D at the degenerate horizon without referring
to the black hole metric. Because of massive simplifications in the product
space, the thus constructed result is relatively simple to obtain and may
serve as an important check of the calculations.

For the conformally coupled field, we have investigated the relation be-
tween the trace of the stress-energy tensor and the vacuum polarization. It
should be emphasized that the calculation of the trace from the vacuum
polarization is far more efficient than the calculations of the trace from the
stress-energy tensor, even though the next-to-leading terms of the approxi-
mation of 〈φ2〉D are needed.

Finally, we briefly describe our calculational strategy. First, we have
constructed the Hadamard–DeWitt coefficients for a general D-dimensional
metric (2). The hard part of the calculations has been carried out using
FORM [46] (a well-known program in high-energy physics), whereas massive
simplifications have been performed in Mathematica. Further, the functional
derivatives of the general effective action (constructed from the complicated
algebraic and differential curvature invariants) with respect to the metric
tensor have been calculated using the fast FORM code. The results have
been checked against the analogous results obtained from the time and ra-
dial Euler–Lagrange equations. The remaining independent component of
the stress-energy tensor has been constructed with the aid of the covariant
conservation equation.
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Appendix

The general results

In this appendix, we present in a tabular form our general results for
the massive quantized field in the spacetime of the static and spherically-
symmetric black holes. Making use of formulas (19) and (36) and the in-
formations contained in the tables, the vacuum polarization 〈φ2〉D can be
easily reconstructed.

TABLE II

The functions Fk(r) and the coefficients αi
k of the massive scalar field in (D = 4)

and (D = 5)-dimensional static, spherically-symmetric black hole.

D = 4 D = 5

k Fk(r) α0
k α1

k α2
k α0

k α1
k α2

k

1 1
r4 1/15 −2/3 2 1/2 −6 18

2 f
r4 0 2/3 −4 −1 12 −36

3 f2

r4 −1/15 0 2 1/2 −6 18

4 f ′

r3 −1/3 10/3 −8 −4/3 14 −36

5 ff ′

r3 7/15 −4 8 26/15 −16 36

6 f ′2

r2 13/45 −3 8 59/120 −6 18

7 f ′′

r2 −1/18 2/3 −2 −1/6 2 −6

8 ff ′′

r2 −1/90 −1/3 2 −7/30 0 6

9 f ′f ′′

r −1/30 −2/3 4 −1/20 −1 6

10 f ′′2 1/60 −1/6 1/2 1/60 −1/6 1/2

11 ff(3)

r −1/5 1 0 −3/10 3/2 0

12 f (3)f ′ −1/30 1/6 0 −1/30 1/6 0

13 ff (4) −1/30 1/6 0 −1/30 1/6 0
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TABLE III

The functions Fk(r) of the quantized massive field in the spacetime of the static
and spherically-symmetric black holes in D = 6 and 7.

k Fk(r) k Fk(r) k Fk(r)

1 1
r6 13 f2f ′′

r4 25 f(3)f ′2

r

2 f
r6 14 f ′f ′′

r3 26 ff(3)f ′′

r

3 f2

r6 15 ff ′f ′′

r3 27 f (3)f ′f ′′

4 f3

r6 16 f ′2f ′′

r2 28 ff (3)
2

5 f ′

r5 17 f ′′2

r2 29 ff(4)

r2

6 ff ′

r5 18 ff ′′2

r2 30 f2f(4)

r2

7 f2f ′

r5 19 f ′f ′′2

r 31 ff(4)f ′

r

8 f ′2

r4 20 f ′′3 32 f (4)f ′2

9 ff ′2

r4 21 ff(3)

r3 33 ff (4)f ′′

10 f ′3

r3 22 f2f(3)

r3 34 f2f(5)

r

11 f ′′

r4 23 f(3)f ′

r2 35 ff (5)f ′

12 ff ′′

r4 24 ff(3)f ′

r2 36 f2f (6)
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TABLE IV

The coefficients αk of the quantized massive field in the spacetime of the static and
spherically-symmetric black holes in D = 6.

k α0
k α1

k α2
k α3

k

1 74/63 −116/5 144 −288
2 −58/15 356/5 −432 864

3 58/15 −356/5 432 −864
4 −74/63 116/5 −144 288

5 −58/15 952/15 −336 576

6 164/15 −2384/15 752 −1152
7 −778/105 1456/15 −416 576

8 116/45 −204/5 216 −384
9 −1103/315 2224/45 −236 384

10 −2/315 184/45 −112/3 256/3

11 −29/90 89/15 −36 72

12 −1/45 −68/15 52 −144
13 65/126 −11/5 −16 72

14 −1/15 −44/15 36 −96
15 683/315 −232/15 4 96

16 131/630 −64/45 −14/3 32

17 1/30 −8/15 3 −6
18 89/630 −109/45 7 6

19 2/315 −1/15 −2/3 4

20 −1/630 1/60 −1/12 1/6

21 −11/15 116/15 −20 0

22 92/105 −42/5 20 0

23 −1/15 11/15 −2 0

24 149/630 −229/45 56/3 0

25 −8/315 −8/45 4/3 0

26 −4/315 −29/45 10/3 0

27 1/210 −1/20 1/6 0

28 1/840 −1/60 1/12 0

29 −1/15 11/15 −2 0

30 −5/42 2/15 2 0

31 −44/315 16/45 4/3 0

32 −1/140 1/30 0 0

33 −1/420 −1/60 1/6 0

34 −2/35 4/15 0 0

35 −1/70 1/15 0 0

36 −1/280 1/60 0 0
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TABLE V

The coefficients αk of the quantized massive field in the spacetime of the static and
spherically-symmetric black holes in D = 7.

k α0
k α1

k α2
k α3

k

1 16/3 −320/3 2000/3 −4000/3
2 −4/3 1120/3 −400/3 4000
3 80/3 −1280/3 6800/3 −4000
4 −32/3 160 −800 4000/3
5 −112/9 1880/9 −3400/3 2000
6 104/3 −4622/9 2500 −4000
7 −5843/252 1855/6 −4100/3 2000
8 199/36 −1697/18 1600/3 −1000
9 −2659/504 569/6 −1625/3 1000
10 19/126 71/12 −200/3 500/3
11 −8/9 148/9 −100 200
12 −4/3 2/9 340/3 −400
13 803/252 −127/6 −40/3 200
14 −1/6 −17/3 220/3 −200
15 1093/252 −209/6 25 200
16 97/336 −53/24 −20/3 50
17 1/18 −8/9 5 −10
18 95/504 −23/6 35/3 10
19 1/126 −1/12 −5/6 5
20 −1/630 1/60 −1/12 1/6
21 −14/9 149/9 −130/3 0
22 793/504 −599/36 130/3 0
23 −1/9 11/9 −10/3 0
24 61/252 −8/9 30 0
25 −2/63 −2/9 5/3 0
26 −1/63 −29/36 25/6 0
27 1/210 −1/20 1/6 0
28 1/840 −1/60 1/12 0
29 −1/9 11/9 −10/3 0
30 −115/504 13/36 10/3 0
31 −11/63 4/9 5/3 0
32 −1/140 1/30 0 0
33 −1/420 −1/60 1/6 0
34 −1/14 1/3 0 0
35 −1/70 1/15 0 0
36 −1/280 1/60 0 0
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